
The Very Lazy ń-Calculus
and the STEC Machine

Jan Rochel⋆

Universiteit Utrecht, The Netherlands
Department of Computer Science

rochel@cs.uu.nl

Abstract. Current implementations of non-strict functional languages rely on
call-by-name reduction to implement theń-calculus. An interesting alternative
is head occurrence reduction, a reduction strategy specifically designed for the
implementation of non-strict, purely functional languages. This work introduces
thevery lazyń-calculus, which allows a systematic description of this approach.
It is not based on regularB-reduction but a generalised rewriting rule called
γ-reductionthat requires fewer reductions to obtain useful results from a term.
It therefore promises more efficient program execution than conventional execu-
tion models. To demonstrate the applicability of the approach, an adaptation of
the Pointer Abstract Machine (PAM) is specified that implements the very lazy
ń-calculus and constitutes a foundation for a new class of efficient functional lan-
guage implementations.

1 Introduction

The ń-calculus is the foundation for the semantics of functionalprogramming lan-
guages. Decades of research on the compilation and execution of non-strict functional
languages has resulted in a number of different abstract machines such as in [Fairbairn 1987]
[Peyton Jones 1987] [Burn 1988] [Peyton Jones 1992] [Holyer 1998] [Leijen 2005] [Krivine 2007].
They implement theń-calculus by applying non-strict (orlazy) reduction strategies,
such ascall-by-namereduction.

A promising alternative is the Pointer Abstract Machine [Danos 2004], which is
based on a reduction strategy that is lazier thancall-by-namereduction in a certain
sense. The Pointer Abstract Machine (PAM) is derived from a generalised version of
theń-calculus and then extended to support the range of featuresrequired for the imple-
mentation of a fully-fledged functional programming language. The result is the STEC
machine, a concrete, implementation-oriented manifestation of the PAM.

After giving a brief recapitulation of theń-calculus and lazy evaluation we intro-
duce thevery lazyń-calculus, which forms the basis of the approach. It relies on a
generalisation ofB-reduction that leads to a new reduction strategy, calledhead occur-
rence reduction. We systematically develop the STEC machine, an abstract machine for

⋆ Many thanks to Carsten Sinz, Patrik Jansson, and Daniel P. Friedman whose kind support was
indispensable for the publication of this work, and also to Vincent van Oostrom and Laurent
Regnier for their helpful comments.

the very lazyń-calculus. It has unique characteristics that promises high-performance
program execution. In the last section we discuss opportunities for further research in
order to create a new kind of efficient functional language implementation.

2 Basics

2.1 The ń-Calculus

The pure, untypedń-calculus [Barendregt 1984] is a term rewriting system that operates
on terms calledń-expressions. For a given set of variablesV they are defined by:

E ::= λV.E (abstraction)
| (E E) (application)
| V (variable)

(ń-expression)

We henceforth assume thatx,y,z∈V ande,e1,e2 ∈ E and also that for eachv∈V, ab-
stractions of the formλv.E occur at most once in a term. This simplification conforms
to the handling of the name-capture problem in the context ofprogramming language
implementation where at compile-time variables are resolved to an unambiguous rep-
resentation.

Three rewrite rules are defined for the evaluation of such expressions:α-, B-, and
η-conversion. For the implementation of functional programming languages,α- andη-
conversion are of minor importance and are not discussed here, leavingB-conversionas
the central evaluation mechanism of theń-calculus.

As long as the substitution variablex occurs at most once beneath the reduced
ń-abstraction,B-conversion reduces the size of the expression, therefore it is more often
than not calledB-reductionand is defined by:

(λx.e1)e2 −→βx e1[x := e2] (B-reduction)

A term is called areducibleexpression (redex) if it has the form(λx.e1)e2. A term in
which no redexes occur is innormal form(NF).

2.2 Lazy Evaluation

In the implementation of programming languages the evaluation of an expression yields
the result of a computation. The analogy of a result in theń-calculus is however not
fully obvious. While a term in NF can be considered a result (asit can no longer be
reduced) in functional languages it turns out to be overkillto reduce any given term to
NF. Instead, other forms that may still contain redexes are targeted, likeweak normal
form (WNF), head normal form(HNF), orweak head normal form(WHNF), specified
as follows, whereAB∗ ::= A | (AB)B∗.

ENF ::= λV.ENF | V E∗
NF (normal form)

EWNF ::= λV.E | V E∗
WNF (weak normal form)

EHNF ::= λV.EHNF | V E∗ (head normal form)
EWHNF ::= λV.EWHNF | V E∗ (weak head normal form)

If such a form semantically relates to a meaningful concept of a result, by evaluat-
ing to this form instead of NF, redundant reductions can be avoided. To ensure no
effort is squandered due to such redundant reductions, a practical implementation of
the ń-calculus requires a well-defined scheme (reduction strategy) to select for each
B-reduction step a non-redundant abstraction. Well-established examples are:normal
order reduction to NF,hybrid normal orderreduction to NF,applicative orderreduc-
tion to NF,hybrid applicative orderreduction to NF,call-by-valuereduction to WNF,
head spinereduction to HNF,call-by-namereduction to WHNF [Sestoft 2002].

Generally, non-strict languages imply the use of one of the last two strategies, which
never reduces redexes that occur within an argument. Moreover call-by-name never
reduces redexes beneath ań-abstraction.

@

r@

sλx

@

xλy

λz

@

yz

−→βx

@

r@

sλy

λz

@

yz

−→βy

@

rλz

@

sz

−→βz

@

sr

Fig. 1. Call-by-name reduction to WHNF

3 The Very Lazy ń-Calculus

To motivate the derivation of a new calculus it is helpful to relate to the properties
specific to the targeted class of programming languages. Therefore we refer to language
elements like constructors and case discrimination without explicitly introducing them
(as a part of the calculus). Constructors can be thought of asfree variables.

For the implemention of a non-strict language, it is in general desirable to increase
the degree of laziness by using a normal form that requires fewer reductions. But then
such a form is useless if it does not reflect the result of a computation in a sensible
manner. Both WHNF and HNF fail to accomplish this with adequate precision in regard
to the specifics of non-strict functional languages.

Operationally both forms of lazy evaluation (head spine reduction and call-by-
name reduction) proceed by walking down the spine, reducingany occurring abstrac-

tion/application pairs on the way until the tip of the spine is reached. Further action then
depends on the quality of this value.

Let us assume that an expressione= ((λx.y)e1)e2 is the scrutinee in a case discrim-
ination. The selection of the case alternative then solely depends on the constructor at
the head position of its normal formeNF = ye2. However ify is a constructor,ealready
is in a form that at the tip of its spine without the need for anyreductions reveals the
value required to select the appropriate case alternative.Then why should all satisfied
abstractions abovey be reduced before effecting the case discrimination? Afterall such
reductions may never affect a free variable at the tip of the spine.

Thus, we attempt to specify a calculus with a normal form thataccurately captures
this formulation of non-strict semantics, and a reduction strategy that efficiently reduces
to this normal form. Both concepts relate to the variable at the tip of the spine, which
we refer to as thehead occurrence(hoc) [Danos 2004] of an expression:

hoc(λx.e) = hoc(e)
hoc(e1e2) = hoc(e1)
hoc(x) = x

(head occurrence)

3.1 The Quasi Head Normal Form

The normal form of the very lazyń-calculus is calledquasi head normal form(QHNF)
[Danos 2004]. We give a definition that is more straightforward than the original one
by relating to the hoc of the NF:

EQHNF := {e∈ E | hoc(e) = hoc(eNF)} (quasi head normal form)

An optimal reduction strategy that evaluates to QHNF in a minimum number of steps
must not perform unneeded reductions. The most direct approach for such a strategy
is to repeatedly substitute the variablet at the tip of the spine (hoc) by reducing the
corresponding abstractionλt until QHNF is obtained. This is generally not possible with
B-reduction, however. The terme= ((λx.(λy.y))e1)e2 for instance is not in QHNF, yet
the ń-calculus does not allow substituting fory, asλy occurs directly beneath another
abstractionλx and therefore cannot beB-reduced beforeλx.

Considering this restriction of theB-reduction as an unnecessary shortcoming of the
ń-calculus, we now attempt to generaliseB-reduction in order to make it more powerful.

3.2 The γ-Reduction

The very lazyń-calculus evaluatesń-expressions by applying theγ-reductionrule, which
allows reductions of abstraction/application pairs alongthe spine that are not adjacent
to each other. We writee1 −→γx e2 to denote aγ-reductione1 −→γ e2 that usesx as a
substitution variable:

p0(e1) = x

e1e2 −→γx e1[λx.e := e[x := e2]]
(γ-reduction)

Thereby p0 is a function that implements a simple parentheses-matching algorithm
treating applications as left and abstractions as right parentheses. The idea is to identify

abstraction/application pairs along the spine that would be B-reduced in the course of
head spine reduction to HNF. Subsequently, any of these pairs can be reduced individ-
ually even if the abstraction node is not directly adjacent to the application node.

p0(λx.e) = x
pi(λx.e) = pi−1(e) (i > 0)
pi(e1e2) = pi+1(e1)

(abstraction/application matching)

In the definition ofγ-reduction above,p0(e1) walks down the spine to locate the abstrac-
tion that matches the argumente2. This permitsγ-reduction to skip over abstraction and
application nodes that occur in-betweenλx ande2 that would have been reduced by
conventional non-strict reduction strategies. For an example seeFig. 4.

A proof of the consistency ofγ-reduction with the semantics of theń-calculus is
not given here, but much as in [Kamareddine 2001] B-equivalence is easily deduced by
decomposingγ-reduction into aB-reduction embedded in a sequence ofB-equivalent
rearrangements of the spine. Moreoverγ-reduction is a generalisation ofB-reduction:

e1 = λx.e =⇒ p0(e1) = p0(λx.e) = x
=⇒ e1e2 −→γx e1[λx.e := e[x := e2]] = e[x := e2]

We notice that indeed theB-irreducible expressione from above isγ-reducible:

((λx.(λy.y))e1)e2 −→γy (λx.e2)e1

3.3 Quasi Head Normal Form, revisited

Based onγ-reduction, QHNF can alternatively be redefined as

EQHNF ::= λV.EQHNF | EQHNFE∗ | i (quasi head normal form)

wherei is a variable not substitutable by aγ-reduction. This is the case if either the hoci
is free (e.g. a constructor), or if the corresponding abstractionλi is unsatisfied(i.e. there
is no matching application).

(1)

@

eλx

@

xi

(2)

λi

@

eλx

@

xi

(3)

@

eλx

λi

i

(4)

@

e2@

eλx

λi

i

Fig. 2. Terms (1-3) are in QHNF, (4) is not asi is γ-reducible

To see that both definitions of QHNF match, we show that for some terme the
hoc(e) is γ-irreducible if and only ifhoc(e) = hoc(eNF). This follows from the robust-
ness of the parentheses-matching algorithm in respect toγ-reductions, which only ever

reducematchingabstraction/application pairs from the spine. Because theγ-irreducible
hoc(e) cannot be substituted, it follows by induction thathoc(e) remains at the tip of the
spine during the entireγ-reduction to normal form and thereforehoc(e) = hoc(eNF).

Conversely ifhoc(e) = hoc(eNF), γ-reduction may never substitutehoc(e) since
otherwise it would not beB-equivalent.

ENF ⊂ EHNF∩EWNF
EWHNF = EHNF∪EWNF
EQHNF ⊃ EHNF
EQHNF 6⊃ EWHNF

Fig. 3. Set relations between various normal forms

3.4 Head Occurrence Reduction

Based on this definition we can define an optimal reduction strategy to QHNF.γ-reductions
that substitute the hoc are clearly sufficient and are alwaysneeded. We call the reduc-
tion strategy that in each step substitutes the hoc of the term using aγ-reductionhead
occurrence reduction:

e−→γt e′ t = hoc(e)

e−→ e′
v−→ v

e−→ e′

λx.e−→ λx.e′
e1 −→ e′1

e1e2 −→ e′1e2

The evaluation of a term according to head occurrence reduction in each step needs
to identify three nodes affected by the reduction of the graph: t = hoc(e) at the tip of
the spine, the corresponding abstraction nodeλt, which is located further up the spine,
and the matching application node with the right-hand sidee2 even further up the spine.

Head occurrence reduction is lazier than conventional lazyreduction strategies in
the sense that it reduces to a normal form that expresses the semantics of non-strict
functional languages more accurately than WHNF. Thus reductions are avoided that
deal with arguments of the result prematurely.

3.5 Examples

To compare our reduction strategy to conventional lazy evaluation, consider the term
((λx.(λy.λz.zy)x)s) r. ThreeB-reductions are required for call-by-need reduction to

WHNF (Fig. 1). For the same term, head occurrence reduction requires only oneγ-reduction
to reduce to QHNF (Fig. 4). FurthermoreB-reduction can not produce the depicted
transition. Pathological cases can be constructed, such as(λx1 . . .λxn.λy.y)e1 . . .en or
(λy(λx1 . . .λxn.y)e1 . . .en)e that requiren additional reductions to obtain WHNF.

@

r@

sλx

@

xλy

λz

@

yz

−→γz

@

sλx

@

xλy

@

yr

Fig. 4. head occurrence reduction to QHNF

4 The STEC-Machine

We now derive an abstract machine that implements the very lazy ń-calculus exploiting
its particular properties for improved efficiency. It is an adaptation of the PAM enriched
by language elements like case discrimination and primitive functions to support prac-
tical functional languages.

A dominant issue in the design of such an abstract machine is that terms represent-
ing nontrivial programs are graphs with directed cycles rather than trees. This is due
to functions that are used at different sites in the program definition, and may involve
(mutual) recursion. So we cannot statically unfold the graph, since the resulting tree
would be of infinite size. Therefore the graph needs to be expanded incrementally dur-
ing evaluation. There are various solutions to this, from simple approaches like copying
parts of the graph as needed, to more sophisticated techniques like super-combinator
compilation [Hughes 1982].

Here however, we explore a new direction where the abstract machine’s main run-
time data structures remain unmodified once instantiated. While this seems contrary to
the notion of graph rewriting, the approach combines well with the very lazyń-calculus.
Let us first take a glance at the untyped language interpretedby the abstract machine.

4.1 Abstract Machine Language, pure version

The term to be evaluated is given as a program definition comprising a set of function
definitions of the form:

f = λx1 . . .xm.a0 . . .an m,n≥ 0

Thearity of a function f denotes the number of parameters, herearity(f) = m. On
its right-hand side it specifies a non-empty list of arguments args(f) = a0 . . .an that
can be individually addressed by index:argsi(f) = ai . Note that onlya1 . . .an represent
application nodes. Consequentlya0 is not included in the argument count|args(f)|= n.

The language interpreted by the STEC-machine is a simple, untyped, functional lan-
guage with a flat structure, i.e. all arguments of a functionf are atomic, such that each
of f ’s argumentsargs(f) is a variable, either addressing a function or a parameter. Non-
atomic expressions in the source language occur through theplacement of parentheses
or other language constructs that lead to the nesting of expressions. The atomicity prop-
erty is easily enforced at compile-time by factoring each non-atomic argument into a
separate function definition. This atomicity of the function arguments induces a certain
kind of linearity that characterises the evaluation procedure to a large extent.

It is understood that in a compiled setting, numeric rather than symbolic values are
used to reference functions and parameters. Functions are referenced by the address of
the memory location of their definition. It is straightforward to reference parameters
by their index as they occur in the function’s parameter list. However, the scope of a
function f extends beyond its own parameter list. On the right-hand side of f not only
f ’s own parameters may be referenced but also parameter variables that occur free in
f . Therefore to unambiguously address a specific parameter not only its index but also
the associated function must be specified.1 We useP f

i to denotef ’s ith parameter. This
may be thought of as a form of reversed de-Bruijn index [De Bruijn 1972] with a pivot.

Another technique employed by today’s functional languageimplementations to
cope with free variables isń-lifting, however this transformation is just the opposite
of what we want to accomplish. Rather its reverse transformation calledń-dropping
[Danvy 2000] might integrate well with our execution model.

program-definition::= function-definition+

function-definition::= function-idarity argument+

arity ::= N
0

argument ::= function-id | Pfunction-id
N+

Fig. 5. Abstract syntax of the STEC machine language

In the absence of named parameters, we do not need to maintainparameter lists.
Instead we merely need to specify the arity of each function.We thus obtain a specifi-
cation of the abstract machine language that represents as afunction definition a term

1 Instead of namingf explicitly, also thenesting distancebetweenf and the referencing argu-
ment could be used, which is however less descriptive.

of the pureń-calculus as a spine-sequence of abstraction nodes followed by applica-
tion nodes (Fig. 5). Each function definition can be addressed by a unique function ID,
which can be regarded as a function name. However, in compiled form is conveniently
the memory address of the function definition.

What follows is a description of the dynamic behaviour of the STEC-machine and
its data structures created at run-time. During the evaluation, the program definition
is accessed only through thearity- and theargs-functions. It is purely static data, i.e.
it is generated at compile-time and no rewriting takes placeon the original function
definitions.

(1)
f = λx . id id (id x)
id = λx . x

(2)
f1 = id id idx
id1 = P

id
1

idx0 = id P
f
1

(3)

λx

@

@

xλc

c

@

λb

b

λa

a

Fig. 6. Term given as (1) ań-expression, (2) STEC machine code, (3) a fully-expanded
graph

4.2 Graph Expansion

In each step of the evaluation, head occurrence reduction performs γ-reductions that
substitute the variable at the tip of the spine (hoc). Therefore not only the appropriate
abstraction/application pair must be located, also the hocis usually not immediately
at hand due to the fragmentation of the graph into function definitions. Thus walking
down the spine to reach its tip often requires a series of graph expansions.

The root of the term to be evaluated is specified by a designated function f , whose
definition directly represents the topmost fragment of the term.2 If the hoc is not imme-
diately visible, that is if the leftmost argumentargs0(f) references a functiong rather
than a parameter, then the graph has to be unfolded by instantiatingg in order to locate
the hoc of the spine withing’s definition.

While this at first might seem like a description of regular non-strict function calls,
those in the course of the instantiation also immediately pass the arguments supplied
by its caller to the callee. There are two possibilities thatperform such function calls,
the push/enterand theeval/applymethod [Marlow 2006]. Ultimately this is where
B-reductions take place in conventional functional language implementations.

The very lazyń-calculus however allows theB-reduction to be omitted, thus no argu-
ments are passed tog. Therefore, according to head occurrence reduction,γ-reductions

2 Generally this function is namedmain or similarly.

cannot take place before the tip of the spine is revealed. Until then the abstract machine
simply proceeds to build the graph while walking down the spine.

As the graph is only expanded along its spine, it has a linear structure in the form
of a series of functions that have been stuck together, whichis easily represented using
a stack. Instead of explicitly maintaining abstraction andapplication nodes (replicated
from the function definitions), for efficiency, we use entirefunctions as the unit of the
run-time data structure.

4.3 The Evaluation Stack

These functions are represented by functioninstances, which hold a pointer to the cor-
responding function definition and act as a copy of the function. Thus the primary run-
time data structure of the STEC-machine is a stack of instances, theevaluation stack.
It grows from right to left and unlike a usual stack, read accesseswithin the evalua-
tion stack are permitted. Instances are addressed according to their stack position. The
notation for an evaluation stack containingn instances:

E ::= In In−1 . . . I1 (evaluation stack)

Besides the evaluation stack, the state of the abstract machine comprises astatus register
S that specifies the action that is to be taken next, and atarget register Tthat points to
thestack addresstargeted by the action:

STE::= (S,T,E) (configuration)

Summarising, the evaluation stack encodes the current termas a sequence of function
instances, each of them representing a segment of the term’sspine. The graph is ex-
panded along its spine as long as the leftmost instancet references another function in
its 0th argument, namely ifargs0(f) = g, assumingt is an instance off . We say that
an argument requestA0 is issued in order to examine the 0th argument off . A graph
expansion takes place by pushing another instance (in this case ofg) on the stack.

4.4 Locating an Abstraction

At some point the tip of the spine (hoc) is reached, which is indicated by the 0th ar-
gument of the leftmost instance being a parameterP

f
i rather than a function reference.

In order to effect aγ-reduction, the corresponding abstraction/application pair must be
located. The abstraction will occur somewhere further up the spine within an instance
of f . However, there might be multiplef -instances on the evaluation stack, but we want
only the one that corresponds to the appropriate abstraction.

To determine the correct scope of an instancet it suffices to identify the instances
that createdt. We calls theparentof t. This corresponds to the edge from an argument
node ofs to its right-hand side in the term graph. This relationship is expressed by
parent edgesin the evaluation stack that connect each function instancewith another
instance further right in the stack. So besides the reference to the function definition
it represents, a function instance also maintains a pointerto its parent. How parent

pointers are established is covered later. An instance of a function f with a parent edge
to the instance at stack addressa is denoted byf a.

I ::= FA (function instance)

If the argumentP f
i occurs in a functiong, then for each instance ofg, the corresponding

instance off is connected by a chain of one or more parent edges.3 When an argument
of this form is encountered, the status register is set toS= P

f
i , indicating aparameter

request. Thereby the search for the abstraction is conducted by following parent edges,
which we callbacktracing. Backtracing is completed once the dynamic pivot (an in-
stance off) is located.4 The sought-after abstraction is theith parameter of the located
function instance:

Parameter-Request:(P f
i ,a, ...g

p
a ...)

→ (P
f
i , p, ...g

p
a ...) f 6= g (Backtrace)

→ (Ai ,a−1, ...gp
a ...) f = g (Request argument)

4.5 Locating the application

The application node that matches this abstraction is further up the spine, and in the
majority of cases (i.e. when the function application is perfectly saturated) within the
function instance just to the right off , called f ’s predecessor.5 This is where the search
for the application node begins (T = a−1). Therebyi−1 abstractions (parameters off)
have already been skipped, therefore the nexti −1 abstraction nodes that occur further
up the spine cannot belong to the abstraction that is to beγ-reduced.

To locate the corresponding application node, the spine hasto be walked upwards
applying the parentheses-matching algorithm.S= Ai indicates thati−1 unmatched ab-
straction nodes have been passed while walking upwards. Thus the nexti−1 application
nodes must be skipped. Keeping in mind that each functionf represents a sequence of
arity(f) abstractions followed by|args(f)| applications, the algorithm is implemented
as follows by the abstract machine:

Argument-Request:(Ai ,a, ... f−a ...)
→ (Ai−|args(f)|+arity(f),a−1, ... f−a ...) |args(f)|< i (Skip)
→ (argsi(f),a, ... f−a ...) |args(f)| ≥ i (Serve)

Once the matching application node is found its valueargsi(f) is to substitute the tip of
the spine in the subsequentγ-reduction. We say it isserved(put into theS for examina-
tion).

3 This corresponds to static links and static chains in the call stack of the run-time system of
imperative programming languages.

4 Due to the scoping rules of functional languages it is always the first occurrence of anf -
instance that binds the requested parameter.

5 Accordingly in conventional execution models parameters of a perfectlysaturated function
call passed directly by the caller.

4.6 Very Lazy Evaluation

Once the hoc is identified and the corresponding abstraction/application pair is located,
according to the definition ofγ-reduction the term is to be rewritten in multiple posi-
tions: First, each occurrence of the substitution variableis replaced by the argument’s
right-hand side, then the abstraction and application nodes are discarded. However, not
one of these operations are performed by the abstract machine, which at first may be
surprising. Then again it is natural that modifications of individual nodes cannot easily
be mapped to a representation of the term where function instances capture only its
macro-structure and do not reproduce the internal structure of the function definitions.

Consequently the abstract machine retains the abstraction/application pair, which is
semantically correct in terms ofB-equivalency. This simplifiesγ-reduction considerably,
as the de-Bruijn indexes remain valid so noα-conversion is necessary. Here we do not
discuss sharing, so we do not address multiple occurrences of substitution variables.
Thus nothing but the hoc itself must be substituted, which coincides with what is defined
ashead linear reduction[Danos 2004].

But also the substitution of the hoc can be omitted, if it doesnot interfere with sub-
sequent evaluation. Indeed the 0th argument of an instance of a function f is examined
only once, directly after it is pushed on the stack. Also it isnot counted in|args(f)| so it
has no impact on the parentheses-matching algorithm. Therefore the abstract machine
leaves the hoc in place leaving all function instances unmodified.

There are two cases for the value of the application node to distinguish for further
action. An argument may reference either a function or a parameter. Let us first as-
sume the former, thusS= f . Then f is instantiated and pushed on the evaluation stack.
Thereby the function instance containing the scrutinised application node (the current
value of theT-register) is registered as the parent of the new function instance. ThenS
is set toA0 andT to the address of the newly created function instance, such that again
the 0th argument of the leftmost function instance is examined for the nextγ-reduction
step.

Instantiate:(f ,a, ...)
→ (A0,n, f a

n ...) (Push Instance)

If the argument is a parameter (S= P
f
i) according toγ-reduction, it would substitute

the hoc by this value. But once again, no such substitution isperformed by the abstract
machine, which saves anα-conversion. Instead, without any intermediate rewritingthe
argument is treated directly as if it was the hoc, according to the inference rules for
parameter handling specified above.

4.7 Wrapping it up

Based on the presented mechanisms a specification of the abstract machine can be given
that implements the very lazyń-calculus. The operational semantics (Fig. 8) is speci-
fied in a rather unconventional but quite intuitive manner. Note that variables with no
relevance to a specific rule (don’t-cares) are denoted as ‘−’, similarly for sequences,
denoted as ‘...’.

Summarising, some interesting characteristics of the abstract machine can be ob-
served:

STE ::= (S,T,E) (configuration)
S ::= F | PF

N
| AN (status register)

T ::= A (target register)
E ::= In In−1 ... I1 (evaluation stack)
A ::= N (stack address)
I ::= FA (function instance)
F ::= N (function address)

Fig. 7. Configuration grammar

– Arguments are fetched at the latest moment possible in contrast to conventional
execution models where arguments are passed by the caller assoon as they are
available rather than as soon as they are required, which is aform of strictness in
the argument handling. Therefore it is in fact justified to consider our model lazier.

– On the evaluation stack a function instance is always directly preceded by its caller.
This relation is modeled without the help of pointers. That structure is exploited by
the abstract machine when fetching arguments.

– There is no need to maintain a constantly updated environment. The evaluation
stack can be thought of as an incremental definition of the environment.

– Interestingly, the sequence of instances on the evaluation stack directly encodes the
path from the root of the fully expanded, unreduced term to the tip of its spine.

– The term is in QHNF either if the hoc is a free variable (such as a constructor), or if
the term is functional such that for a selected abstraction no matching application
is found. The latter case manifests itself in an argument request attempting to cross
the right boundary of the evaluation stack.

– Very lazy evaluation is linear in many aspects such as the manner in which functions
are defined, the linearity of the reduction strategy, and therun-time data structure
(the evaluation stack). This is possibile due to the technique of using parent pointers
and because of refraining from any rewriting on the spine.

Initial State:(main ,⊥,ε)

Instantiate:(f ,a, ...)
→ (A0,n, f a

n ...) (Push Instance)

Argument-Request:(Ai ,a, ... f−a ...)
→ (Ai−|args(f)|+arity(f),a−1, ... f−a ...) |args(f)|< i (Skip)
→ (argsi(f),a, ... f−a ...) |args(f)| ≥ i (Serve)

Parameter-Request:(P f
i ,a, ...g

p
a ...)

→ (P
f
i , p, ...g

p
a ...) f 6= g (Backtrace)

→ (Ai ,a−1, ...gp
a ...) f = g (Request argument)

Fig. 8. Operational semantics

4.8 Example evaluated

To depict the evaluation as performed by the STEC machine we regard the execution of
the example program fromFig. 6. It was chosen to exemplify the operational semantics
of the STEC machine rather than to reveal the advantages of head occurrence reduction.

λx

@

@

xλc

c

@

λb

b

λa

a

−→a

λx

@

@

xλc

c

@

λa

λb

b

−→b

λx

@

@

λa

λb

@

xλc

c

−→c

λx

@

@

λa

λb

@

λc

x

Fig. 9. Head linear reduction of the program graph ofFig. 6

To understand the abstract machine evaluation given below,it is helpful to identify
each instance on the evaluation stack with the corresponding sequence of spine nodes
in Fig. 9. Therefore the function definitions fromFig. 6 need to be consulted. First we
expand the term along the spine beginning from the rootf to locate its hoc.

Initial State: (f ,⊥,ε)
Push Instance:→ (A0,1, f⊥1)
Serve: → (id,1, f⊥1)

Push Instance:→ (A0,2, id1
2 f⊥1)

The hoc isa (in Fig. 9). The corresponding argument belongs toid’s caller f .

Serve: → (Pid
1 ,2, id

1
2 f⊥1)

Request argument:→ (A1,1, id1
2 f⊥1)

Serve: → (id,1, id1
2 f⊥1)

Push Instance: → (A0,3, id1
3 id1

2 f⊥1)















a

For the next argument request in order to locate the appropriate application node, a
function instance must to be skipped. InFig. 9 this corresponds to the abstraction node
λa. The argument index is incremented by one such that the matching application node

(the one aboveλa) is also skipped:

Serve: → (Pid
1 ,3, id

1
3 id1

2 f⊥1)

Request argument:→ (A1,2, id1
3 id1

2 f⊥1)

Skip: → (A2,1, id1
3 id1

2 f⊥1)

Serve: → (idx,1, id1
3 id1

2 f⊥1)

Push Instance: → (A0,4, idx1
4 id1

3 id1
2 f⊥1)























b

The call of a known functionid by idx is realised a spine expansion:

Serve: → (id,4, idx1
4 id1

3 id1
2 f⊥1)

Push Instance:→ (A0,5, id4
5 idx1

4 id1
3 id1

2 f⊥1)

Here it can be seen that someγ-reductions may not even require an update of the eval-
uation stack.

Serve: → (Pid
1 ,5, id

4
5 idx1

4 id1
3 id1

2 f⊥1)

Request argument:→ (A1,4, id4
5 idx1

4 id1
3 id1

2 f⊥1)

}

c

The request byidx for a parameter that was bound in a different functionf requires a
backtracing step to locate the abstraction that binds the current hoc.

Serve: → (P
f
1,4, id

4
5 idx1

4 id1
3 id1

2 f⊥1)

Backtrace: → (P
f
1,1, id

4
5 idx1

4 id1
3 id1

2 f⊥1)

Request argument:→ (A1,⊥, id4
5 idx1

4 id1
3 id1

2 f⊥1)







x

The evaluation terminates because a request attempts to cross the stack boundary. That
means that no abstraction/application pair could be located within the spine, thus the
term is in QHNF.

4.9 Case-Discrimination and Primitives

To implement functional programming languages, two more issues need attention: case
discrimination and primitives operators. They cannot be modeled by means of the pure
ń-calculus, which has to be enriched for that purpose. Here, this semantic extension is
only realised on the abstract machine level, not as yet another ń-calculus variant.

program-definition::= function-definition+

function-definition::= function-idarity argument+ alternative∗

arity ::= N
0

argument ::= function-id | Pfunction-id
N+ | ON | constant

alternative ::= integer function-id| default function-id
constant ::= integer | float | ...

Fig. 10. Enriched abstract syntax of the STEC machine language

In the enriched abstract machine language, a case discrimination is specified by at-
taching a non-empty, integer-indexed list of alternativesalts(f) to a function definition
f , its right-hand sideargs(f) being the scrutinee. Constructors are mapped to integers
at compile-time unambigously within the constructor set ofone data type. Constructor
parameters can be accessed as the function parameters of thealternatives’ right hand-
side. No further measures are necessary to model constructors, as they are adequately
handled by the argument request mechanism. A primitive operator (Oo) addresses a
platform-specific functionality that is identified by a unique numeric identifiero.

The operational semantics needs to account for the strictness that these language
constructs imply. The scrutinee of a case discrimination reveals its constructor only
in QHNF. Thus, to select the correct case alternative, acontinuation-mechanism is re-
quired to return to the case discrimination once the scrutinee is evaluated. Likewise,
primitive operators are generally strict in all of their arguments, so after the evaluation
of each argument, the evaluation must return to its call site, either to evaluate the next
argument, or if it is saturated to apply the operator.

Strict evaluation may nest, for instance, if the scrutinee of a case discrimination
involves a further case discrimination. Therefore continuations are also maintained in a
stack, thecontinuation stack(C), thus we extend the abstract machine configuration to:

STEC::= (S,T,E,C) (configuration)

The continuation stack holds two types of tokens: case continuation tokens and operator
tokens, both of which specify the stack address that the continuation returns to. Addi-
tionally an operator token needs to define the operator it represents as well as a list of
previously evaluated operands.

C ::= K∗ (continuation stack)
K ::= C

A | OA
O[V

∗] (continuation)
O ::= N (operator)
V ::= integer | f loat | ... (constant value)

Continuations are pushed on the continuation stack when an operator or a function that
defines a case discrimination is served. In the latter case the evaluation (besides pushing
the continuation) proceeds as before by evaluating its right-hand side (the scrutinee). If
an operator is served, its first operand is requested.

Instantiate:(f ,a, ...)
→ (A0,n, f a

n ..., ...) |alts(f)|= 0 (Push Instance)
→ (A0,n, f a

n ...,Cn
...) |alts(f)|> 0 (Scrutinise)

Operator:(Oop,−, tn..., ...)
→ (A1,n, tn...,On

op[]...) (First Operand)

As soon as the subsequent computation yields a constant value c, indicated byS=
c, the continuation on the top of the stack is examined. For a case continuation, the
correct alternative is selected and served. For operator continuations, before applying
the operator it must first be checked whether more arguments are required. Only when

sufficient operands have been acquired, the operator is applied and the result of the
primitive operation is propagated. This semantics is expressed in the last two groups of
Fig. 12.

STEC::= (S,T,E,C) (configuration)
S ::= F | PF

N
| AN | OO | V (status register)

T ::= A (target register)
A ::= N (stack address)
E ::= In In−1 ... I1 (evaluation stack)
C ::= K∗ (continuation stack)
I ::= FA (function instance)
F ::= N (function address)
K ::= C

A | OA
O[V

∗] (continuation)
O ::= N (operator)
V ::= integer | f loat | ... (constant value)

Fig. 11. Enriched configuration grammar

In this work we derived from the very lazyń-calculus the STEC-machine, which is
a concretisation of the PAM enriched by strict semantics to support case discriminations
and operators. In [Danos 2004] different concepts of head linear reduction were mixed
up in one definition. Here we clearly distinct between generalising B-reduction, defin-
ing a reduction strategy, and giving a concrete implementation that avoids rewriting.
Furthermore we distinguish between program compilation and execution.

5 Perspectives

Even though the PAM has already been discovered years ago, ithas not yet been inves-
tigated extensively. However, there is ample opportunity for further research, in partic-
ular it still remains a challenge to find efficient mechanismsfor sharing as well as for
garbage collection that take advantage of the abstract machine’s prominent features.

While it is difficult to reason about the performance of the abstract machine com-
pared to existing functional language implementations without taking these issues into
account, there are aspects about our approach that hold muchpotential in this regard.
Aside from the reduced amount of rewriting steps that are required by the very lazy
ń-calculus, it is primarily the lean memory profile of the STEC-machine that is promis-
ing. The run-time data structures are compact, since per function instance only two
pointers need to be allocated.6 This results in a smaller memory footprint compared
to conventional graph reduction models, which in each closure also maintain a set of
parameters. Furthermore it is noticeable that no pointer updates are necessary resulting
in very few write accesses. While partly compensated by additional read accesses (be-
cause of the need to locate abstraction/application pairs)still the advantage seems to

6 A potential optimisation would be to allow variably-sized function instances, i.e. instances
without a parent pointer for functions without free parameter variables.

Initial State:(main ,⊥,ε,ε)

Instantiate:(f ,a, ..., ...)
→ (A0,n, f a

n ..., ...) |alts(f)|= 0 (Push Instance)
→ (A0,n, f a

n ...,Cn
...) |alts(f)|> 0 (Scrutinise)

Argument-Request:(Ai ,a, ... f−a ..., ...)
→ (Ai−|args(f)|+arity(f),a−1, ... f−a ..., ...) |args(f)|< i (Skip)
→ (argsi(f),a, ... f−a ..., ...) |args(f)| ≥ i (Serve)

Parameter-Request:(P f
i ,a, ...g

p
a ..., ...)

→ (P
f
i , p, ...g

p
a ..., ...) f 6= g (Backtrace)

→ (Ai ,a−1, ...gp
a ..., ...) f = g (Request argument)

Operator:(Oop,−, tn..., ...)
→ (A1,n, tn...,On

op[]...) (First Operand)

Operand:(v,−, ...,Oa
op[v1, ...,vc]...)

→ (applyop(v1, ...,vc,v),−, ..., ...) arity(op) = c+1 (Apply Operator)
→ (Ac+2,a, ...,Oa

op[v1, ...,vc,v]...) arity(op)> c+1 (Next Operand)

Scrutinee:(c,−, ... f p
a ...,Ca

...)
→ (altsc(f),a, ... f p

a ..., ...) (Serve alternative)

Fig. 12. Enriched operational semantics

predominate. This presumption however is yet to be validated in a comparison with a
well-established execution model like the STG-machine [Peyton Jones 1992].

Implementations based on super-combinators usually compile the abstract-machine
code into machine code of the target architecture that integrates the semantics of the
abstract machine and therefore can be directly executed by aconcrete machine. Due to
the simplicity of the STEC-machine, a different compilation model, one that separates
the abstract machine and the function definitions, seems to be adequate. The operational
semantics can be implemented in a very small piece of executable machine code. Each
function definition can be stored in a compact array as read-only data. Access to individ-
ual arguments of a function definition (as frequently performed by the STEC-machine)
can be accomplished efficiently using an array lookup if a uniformly-sized representa-
tion for the arguments is chosen. This would hardly be the case when compiling the
function definitions combined with the operational semantics to machine code, which
would also lead to a considerable increase of the memory footprint.

Since the evaluation stack only grows, a garbage-collection mechanism is required
to release memory occupied by function instances that are nolonger required. In that
sense the evaluation stack in fact is a heap. However, it would be short-sighted to ne-
glect the fact that it is highly structured in comparison to ausual heap in which data is
organised as memory blocks at arbitrary positions that refer to each other. Much is to be
expected by a sophisticated garbage-collection mechanismthat systematically exploits
this structure for increased efficiency. Since the evaluation stack is an incremental defi-
nition of the environment, this would effectively be realised as a (linear) compaction of
the evaluation stack.

Obviously this linearity cannot be sustained once sharing is introduced to the model,
as sharing in a sense implies a non-linear structure. Still,the linearity of evaluation
might offer new possibilities for integrating sharing-techniques that achieve a higher
degree of sharing than full laziness by breaking the linear structure only at few, well-
defined points. In particular the subject of optimal evaluation in the sense of [Lévy 1978]
should be investigated in the light of very lazy evaluation.

Summarising, there is still much opportunity for completion and optimisation of the
STEC-machine in order to obtain a new type of practical high-performance functional
language implementation. In particular it is an interesting question which of the optimi-
sations used by today’s compilers can be applied to the STEC-machine and what new
kind of possibilities for optimisations are opened up by themodel.

References

Fairbairn 1987. JON FAIRBAIRN , STUART WRAY, Tim: A simple, lazy abstract machine to
execute supercombinators. Functional Programming Languages and Computer Architecture,
Springer, 1987, pp 34-45.Lecture Notes in Computer Science, Volume 274/1987.

Krivine 2007. JEAN-LOUIS KRIVINE, A call-By-name lambda-calculus machine. Higher Or-
der and Symbolic Computation, Kluwer Academic Publishers, September 2007, pp 199-207.
Volume 20, Issue 3.

Peyton Jones 1987. SIMON L. PEYTON JONES, PHILIP WADLER, PETER HANCOCK, DAVID

TURNER, The implementation of functional programming languages, Prentice Hall Interna-
tional, 1987.

http://research.microsoft.com/en-us/um/people/simonpj/papers/slpj-book-1987/

Burn 1988. GEOFFREYL. BURN, SIMON L. PEYTON JONES, JOHN D. ROBSON, The spineless
G-machine. Proceedings of the 1988 ACM conference on LISP and functional programming,
ACM, 1988, pp 244-258.

Peyton Jones 1992. SIMON L. PEYTON JONES, Implementing lazy functional languages on
stock hardware: the Spineless Tagless G-machine - Version 2.5, Department of Computing
Science, University of Glasgow, July 9, 1992.

Leijen 2005. DAAN LEIJEN, The lazy virtual machine specification, Institute of Information and
Computing Sciences, Utrecht University, August 22, 2005.

Holyer 1998. IAN HOLYER, ELENI SPILIOPOULOU, The Brisk Machine: a simplified STG ma-
chine, University of Bristol, Department of Computer Science, March 1998.

Barendregt 1984. H. P. BARENDREGT, The Lambda Calculus: Its syntax and semantics, 1984.
Danos 2004. VINCENT DANOS, LAURENT REGNIER, Head linear reduction, unpublished,

http://iml.univ-mrs.fr/ ˜ regnier/articles.html , June 7 2004.
Danos 1996. V. DANOS, H. HERBELIN, L. REGNIER, Game semantics and abstract machines.

Symposium on Logic in Computer Science, IEEE Computer Society, September 2, 1996, p 394
ff.

De Bruijn 1972. NICOLAAS GOVERT DE BRUIJN, Lambda Calculus Notation with Nameless
Dummies– a Tool for Automatic Formula Manipulation, with Application to the Church-Rosser
Theorem. Indagationes Mathematicae, 1972, pp 381-392.

Hughes 1982. R. J. M. HUGHES, Super-Combinators– a new implementation method for ap-
plicative languages. Proceedings of the 1982 ACM symposium on LISP and functional pro-
gramming, ACM, 1982, pp 1-10.

Kamareddine 2001. FAIROUZ KAMAREDDINE, ROEL BLOO, ROB NEDERPELT, De Bruijn’s
syntax and reductional equivalence ofń-terms. Proceedings of the 3rd ACM SIGPLAN inter-
national conference on Principles and practice of declarative programming, ACM, 2001, pp
16-27.

Danvy 2000. OLIVIER DANVY , ULRIK P. SCHULTZ, Lambda-dropping: transforming recursive
equations into programs with block structure. Elsevier Science Publishers, 2000, pp 243-287.
Partial evaluation and semantics-based program manipulation, Volume 248, Issue 1-2 (Octo-
ber 2000).

Marlow 2006. SIMON MARLOW, SIMON PEYTON JONES, Making a fast curry: push/enter vs.
eval/apply for higher-order languages. Journal of Functional Programming, Cambridge Uni-
versity Press, August 10 2006, pp 415-449. Volume 16 2006.

Sestoft 2002. PETERSESTOFT, Demonstrating lambda calculus reduction. The Essence of Com-
putation: Complexity, Analysis, Transformation– Essays Dedicated to Neil D. Jones, T. MO-
GENSEN, D. SCHMIDT, I. H. SUDBUROUGH (eds.), Springer-Verlag, 2002, pp 420-435.Lec-
ture Notes in Computer Science, 2566.

Lévy 1978. JEAN-JACQUES L ÉVY, Optimal reductions in the lambda-calculus. To H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, J. P. SELDIN, J. R. HINDLEY

(eds.), Academic Press, 1978.

http://iml.univ-mrs.fr/~regnier/articles.html

	The Very Lazy -Calculusand the STEC Machine
	 Jan Rochel

