The Very Lazy \-Calculus
and the STEC Machine

Jan Rochet

Universiteit Utrecht, The Netherlands
Department of Computer Science
rochel@cs.uu.nl

Abstract. Current implementations of non-strict functional languages rely on
call-by-name reduction to implement thecalculus. An interesting alternative

is head occurrence reductiom reduction strategy specifically designed for the
implementation of non-strict, purely functional languages. This work éhices
thevery lazyA-calculus which allows a systematic description of this approach.
It is not based on regulgs-reduction but a generalised rewriting rule called
y-reductionthat requires fewer reductions to obtain useful results from a term.
It therefore promises more efficient program execution than caioveat execu-
tion models. To demonstrate the applicability of the approach, an adaptétion o
the Pointer Abstract Machine (PAM) is specified that implements the veyy laz
\-calculus and constitutes a foundation for a new class of efficient furadtian-
guage implementations.

1 Introduction

The \-calculus is the foundation for the semantics of functiopggramming lan-
guages. Decades of research on the compilation and exeaitimn-strict functional
languages has resulted in a number of different abstradtimessuch as irHairbairn 1987
[Peyton Jones 198[Burn 1988 [Peyton Jones 199PHolyer 1998 [Leijen 2009 [Krivine 2007.
They implement the\-calculus by applying non-strict (dazy) reduction strategies,
such agall-by-namereduction.

A promising alternative is the Pointer Abstract Machim&apos 2004 which is
based on a reduction strategy that is lazier tbhal-by-namereduction in a certain
sense. The Pointer Abstract Machine (PAM) is derived fronemaegalised version of
theX-calculus and then extended to support the range of feategesred for the imple-
mentation of a fully-fledged functional programming langeaThe result is the STEC
machine, a concrete, implementation-oriented manifiestatf the PAM.

After giving a brief recapitulation of th&-calculus and lazy evaluation we intro-
duce thevery lazy\-calculus which forms the basis of the approach. It relies on a
generalisation of-reduction that leads to a new reduction strategy, cdlkstl occur-
rence reductionWe systematically develop the STEC machine, an abstracimeafor

* Many thanks to Carsten Sinz, Patrik Jansson, and Daniel P. Friednasgwind support was
indispensable for the publication of this work, and also to Vincent van Gwosand Laurent
Regnier for their helpful comments.

the very lazy\-calculus. It has unique characteristics that promiselk-peyformance
program execution. In the last section we discuss oppditsrior further research in
order to create a new kind of efficient functional languagplementation.

2 Basics
2.1 TheX-Calculus

The pure, untypel-calculus Barendregt 1984s a term rewriting system that operates
on terms called\-expressionsFor a given set of variablés they are defined by:

E:=AVE (abstraction
| (EE) (application (A-expressiop
| V (variable)

We henceforth assume that,z € V ande, e, e, € E and also that for eache V, ab-
stractions of the form\v.E occur at most once in a term. This simplification conforms
to the handling of the name-capture problem in the contepro§ramming language
implementation where at compile-time variables are resbblo an unambiguous rep-
resentation.

Three rewrite rules are defined for the evaluation of suchiesgionsa-, -, and
n-conversionFor the implementation of functional programming langegg- andn-
conversion are of minor importance and are not discusse leavings-conversioras
the central evaluation mechanism of thealculus.

As long as the substitution variableoccurs at most once beneath the reduced
\-abstractiong-conversion reduces the size of the expression, therefizreniore often
than not callegi-reductionand is defined by:

(Ax.e1) &2 —p, €1[X = €] (B-reduction

A term is called aeducibleexpressionredey if it has the form(Ax.e;) . A term in
which no redexes occur is imormal form(NF).

2.2 Lazy Evaluation

In the implementation of programming languages the evialnatf an expression yields
the result of a computation. The analogy of a result inXr@lculus is however not
fully obvious. While a term in NF can be considered a resultitt@an no longer be
reduced) in functional languages it turns out to be ovet&ileduce any given term to
NF. Instead, other forms that may still contain redexes angeted, likeweak normal
form (WNF), head normal forn{HNF), orweak head normal forfAdWHNF), specified
as follows, wher@\B* ::= A | (AB) B*.

Ene ©=AV.Enr | VE{ (normal form

Ewne “=AV.E [VEj\r (weak normal form

Enne = AV.Eune | VE* (head normal form
Ewnnr :i= AV.Ewnne | V E* (weak head normal forin

If such a form semantically relates to a meaningful concém cesult, by evaluat-
ing to this form instead of NF, redundant reductions can bmdad. To ensure no
effort is squandered due to such redundant reductions, digabimplementation of
the \-calculus requires a well-defined schemned(iction strategyto select for each
p-reduction step a non-redundant abstraction. Well-astadd examples argiormal
order reduction to NFhybrid normal orderreduction to NFapplicative ordereduc-
tion to NF, hybrid applicative ordereduction to NFgcall-by-valuereduction to WNF,
head spineeduction to HNFcall-by-namereduction to WHNF $estoft 200p

Generally, non-strict languages imply the use of one ofdketivo strategies, which
never reduces redexes that occur within an argument. Merewall-by-name never
reduces redexes beneatk-abstraction.

@
N
@ r @
AN AN
AX s @ r @
I AN AN
@ Ay s Az @
/N —p, | —p | = A
Ay X Az @ r s
| I VAN
Az @ zZs
I /\
@ zy
/\
zy

Fig. 1. Call-by-name reduction to WHNF

3 TheVery Lazy \-Calculus

To motivate the derivation of a new calculus it is helpful &date to the properties
specific to the targeted class of programming languageseidre we refer to language
elements like constructors and case discrimination witleaplicitly introducing them
(as a part of the calculus). Constructors can be thought fséas/ariables.

For the implemention of a non-strict language, it is in gahdesirable to increase
the degree of laziness by using a normal form that requiresrfeeductions. But then
such a form is useless if it does not reflect the result of a coatipn in a sensible
manner. Both WHNF and HNF fail to accomplish this with adequmecision in regard
to the specifics of non-strict functional languages.

Operationally both forms of lazy evaluation (head spineuctidn and call-by-
name reduction) proceed by walking down the spine, reduaimgoccurring abstrac-

tion/application pairs on the way until the tip of the spisedached. Further action then
depends on the quality of this value.

Let us assume that an expressiea ((Ax.y) e1) € is the scrutinee in a case discrim-
ination. The selection of the case alternative then solepedds on the constructor at
the head position of its normal foreyr = y&. However ify is a constructor already
is in a form that at the tip of its spine without the need for aaguctions reveals the
value required to select the appropriate case alternditven why should all satisfied
abstractions abowebe reduced before effecting the case discrimination? Aftesuch
reductions may never affect a free variable at the tip of fiees

Thus, we attempt to specify a calculus with a normal form #taurately captures
this formulation of non-strict semantics, and a reducttoategy that efficiently reduces
to this normal form. Both concepts relate to the variabléhattip of the spine, which
we refer to as théead occurrencéhoc) [Danos 200fof an expression:

hogAx.e) = hode)
hode; e2) = hode) (head occurrence
hodx) =x

3.1 TheQuas Head Normal Form

The normal form of the very lazy-calculus is calledjuasi head normal forfQHNF)
[Danos 2001t We give a definition that is more straightforward than thigioal one
by relating to the hoc of the NF:

Eqnnr:={e€ E | hoge) = hodenr)} (quasi head normal forjn

An optimal reduction strategy that evaluates to QHNF in aimirm number of steps
must not perform unneeded reductions. The most direct apprfor such a strategy
is to repeatedly substitute the varialplat the tip of the spine (hoc) by reducing the
corresponding abstractiam until QHNF is obtained. This is generally not possible with
p-reduction, however. The tere= ((Ax.(Ay.y))e1) e for instance is not in QHNF, yet
the\-calculus does not allow substituting fgrasAy occurs directly beneath another
abstractior\x and therefore cannot Ifereduced beforax.
Considering this restriction of thereduction as an unnecessary shortcoming of the

\-calculus, we now attempt to generalfseeduction in order to make it more powerful.

3.2 They-Reduction

The very lazy\-calculus evaluatesexpressions by applying tlyereductionrule, which
allows reductions of abstraction/application pairs altmgspine that are not adjacent
to each other. We write; —, € to denote g-reductione; — & that uses as a
substitution variable:
Po(er) = x
e & —y, e1[AX.e:=eXx =]

Thereby pp is a function that implements a simple parentheses-magchigorithm
treating applications as left and abstractions as righamiheses. The idea is to identify

(y-reduction

abstraction/application pairs along the spine that woel@-beduced in the course of
head spine reduction to HNF. Subsequently, any of these pair be reduced individ-
ually even if the abstraction node is not directly adjacerihe application node.

po(Ax.€) = x
pi(Ax.e) = pi—1(e) (i >0) (abstraction/application matching
pi(e1e2) = pita(er)

In the definition ofy-reduction abovepp(e;) walks down the spine to locate the abstrac-
tion that matches the argumemt This permitsy-reduction to skip over abstraction and
application nodes that occur in-betwekx ande, that would have been reduced by
conventional non-strict reduction strategies. For an etarsedrig. 4.

A proof of the consistency of-reduction with the semantics of thecalculus is
not given here, but much as iK@gmareddine 2001B-equivalence is easily deduced by
decomposingireduction into g-reduction embedded in a sequenceadquivalent
rearrangements of the spine. Moreoyeeduction is a generalisation pfreduction:

e =Ax.e = po(e1) = po(Ax.e) =X
= e1& —y, e1[Axe=eX:=e)] =eXx:=e)]

We notice that indeed thgirreducible expressioafrom above isy-reducible:

(AX.(Ay.y)) e1) &2 —y, (Axe2) €1

3.3 Quasi Head Normal Form, revisited
Based ory-reduction, QHNF can alternatively be redefined as
EQHNF =)\V-EQHNF I EQHNF E* I i (quasi head normal fOI’Dﬂ

wherei is a variable not substitutable byaeduction. This is the case if either the hioc
is free (e.g. a constructor), or if the corresponding abstraAi is unsatisfiedi.e. there
is no matching application).

Ai @
@ I @ N
AN @ /\ @ e
AX e /\ AX e /\
Y (2) M e 3 | 4) M e
@ I Ai I
/\ @ I Ai
i X /\ i |
|

i X
Fig. 2. Terms (1-3) are in QHNF, (4) is not ass y-reducible
To see that both definitions of QHNF match, we show that foresdenme the

hoq(e) is y-irreducible if and only ithode) = hod(enr). This follows from the robust-
ness of the parentheses-matching algorithm in respgeteductions, which only ever

reducematchingabstraction/application pairs from the spine. Becausg-threducible
hode) cannot be substituted, it follows by induction thaide) remains at the tip of the
spine during the entirg-reduction to normal form and therefonede) = hodeng).

Conversely ifhode) = hodeyg), y-reduction may never substitutege) since
otherwise it would not b@-equivalent.

WHNEFE

Ene C BEuneNEwNF
EwnnkE = EuneUEWNF
EqQHnE D Enne

EqHnr 2 Ewrne

xXx)e

Fig. 3. Set relations between various normal forms

3.4 Head Occurrence Reduction

Based on this definition we can define an optimal reducti@tesly to QHNFy-reductions
that substitute the hoc are clearly sufficient and are alwagsied. We call the reduc-
tion strategy that in each step substitutes the hoc of time tsing ay-reductionhead
occurrence reductian

e—y € t=hode) vy e— € e —€
e—¢ Ax.e — Ax.€ g6 — e

The evaluation of a term according to head occurrence rigiuict each step needs
to identify three nodes affected by the reduction of the lgrap= hode) at the tip of
the spine, the corresponding abstraction nstjevhich is located further up the spine,
and the matching application node with the right-hand sjd=ven further up the spine.

Head occurrence reduction is lazier than conventional tadyction strategies in
the sense that it reduces to a normal form that expressesthansics of non-strict
functional languages more accurately than WHNF. Thus rézhgtare avoided that
deal with arguments of the result prematurely.

3.5 Examples

To compare our reduction strategy to conventional lazyuatan, consider the term
((A.(Ay.Azzy)x)s)r. Threep-reductions are required for call-by-need reduction to

WHNF (Fig. 1). For the same term, head occurrence reduction requirg®oay-reduction
to reduce to QHNFKig. 4). Furthermoref-reduction can not produce the depicted
transition. Pathological cases can be constructed, su¢hx@s.. Axp.Ay.y)€; ...e, or
(AY(AX1...AXn.y)€1...en)ethat requiren additional reductions to obtain WHNF.

@
N
@ r @
VAN AN
)\lx s)\lx S
@ @
/N —v. /N
Ay X Ay X
I I
Az @
I /\
@ ry
N\
zy

Fig. 4. head occurrence reduction to QHNF

4 The STEC-Machine

We now derive an abstract machine that implements the veplaalculus exploiting
its particular properties for improved efficiency. It is atagtation of the PAM enriched
by language elements like case discrimination and primftimctions to support prac-
tical functional languages.

A dominant issue in the design of such an abstract machitaigerms represent-
ing nontrivial programs are graphs with directed cyclebeathan trees. This is due
to functions that are used at different sites in the prografiniion, and may involve
(mutual) recursion. So we cannot statically unfold the bragince the resulting tree
would be of infinite size. Therefore the graph needs to be g incrementally dur-
ing evaluation. There are various solutions to this, frompde approaches like copying
parts of the graph as needed, to more sophisticated te@mlie super-combinator
compilation Hughes 198p

Here however, we explore a new direction where the abstrachime’s main run-
time data structures remain unmodified once instantiatedle\itis seems contrary to
the notion of graph rewriting, the approach combines welhe very lazy\-calculus.
Let us first take a glance at the untyped language interpbstéide abstract machine.

4.1 Abstract Machine Language, pure version

The term to be evaluated is given as a program definition cisingra set of function
definitions of the form:

f=AX{...Xm.@...an mMn>0

Thearity of a functionf denotes the number of parameters, raigy/(f) = m. On
its right-hand side it specifies a non-empty list of argureemgs(f) = a...an that
can be individually addressed by indexgs () = a. Note that onlya; ... a, represent
application nodes. Consequerdlyis not included in the argument coyatgs(f)| =n.

The language interpreted by the STEC-machine is a simptgpad, functional lan-
guage with a flat structure, i.e. all arguments of a funcfi@are atomic, such that each
of f’s argumentargs(f) is a variable, either addressing a function or a parametar- N
atomic expressions in the source language occur througbldbement of parentheses
or other language constructs that lead to the nesting oesgms. The atomicity prop-
erty is easily enforced at compile-time by factoring each-atomic argument into a
separate function definition. This atomicity of the funoterguments induces a certain
kind of linearity that characterises the evaluation pracedo a large extent.

It is understood that in a compiled setting, numeric rathantsymbolic values are
used to reference functions and parameters. Functiongf@menced by the address of
the memory location of their definition. It is straightfomdato reference parameters
by their index as they occur in the function’s parameter kgiwever, the scope of a
function f extends beyond its own parameter list. On the right-hanel aid not only
f’s own parameters may be referenced but also parameteblewithat occur free in
f. Therefore to unambiguously address a specific parametenhpoits index but also
the associated function must be specifiatle usePif to denotef’s ith parameter. This
may be thought of as a form of reversed de-Bruijn ind@& Bruijn 1973 with a pivot.

Another techniqgue employed by today’s functional languegplementations to
cope with free variables i&-lifting, however this transformation is just the opposite
of what we want to accomplish. Rather its reverse transfoomacalled A-dropping
[Danvy 2000 might integrate well with our execution model.

program-definition::= function-definitiort
function-definition::= function-id,,, argument
arity n=NO o
argument = function-id | punetond

Fig. 5. Abstract syntax of the STEC machine language

In the absence of named parameters, we do not need to mapata@meter lists.
Instead we merely need to specify the arity of each funcifée thus obtain a specifi-
cation of the abstract machine language that representuast#on definition a term

1 Instead of naming explicitly, also thenesting distancéetweenf and the referencing argu-
ment could be used, which is however less descriptive.

of the pure\-calculus as a spine-sequence of abstraction nodes falltyepplica-
tion nodes Fig. 5). Each function definition can be addressed by a uniqueifuméDd,
which can be regarded as a function name. However, in cothfiilen is conveniently
the memory address of the function definition.

What follows is a description of the dynamic behaviour of ti&S-machine and
its data structures created at run-time. During the evianathe program definition
is accessed only through tlaeity- and theargs-functions. It is purely static data, i.e.
it is generated at compile-time and no rewriting takes plawwehe original function
definitions.

)\Ix
f; =idididx /@\
f =Ax.idid (id x) N
1) . 2) idp =P 3
(D) i~ @ i =P 3) e @
Xo =10 Py
Aa Ab Ac x
Ll
a b c

Fig.6. Term given as (1) a-expression, (2) STEC machine code, (3) a fully-expanded
graph

4.2 Graph Expansion

In each step of the evaluation, head occurrence reductidorpes y-reductions that
substitute the variable at the tip of the spine (hoc). Tlwreehot only the appropriate
abstraction/application pair must be located, also theidiasually not immediately
at hand due to the fragmentation of the graph into functidimiiens. Thus walking
down the spine to reach its tip often requires a series ofrgeapansions.

The root of the term to be evaluated is specified by a desigriatetion f, whose
definition directly represents the topmost fragment of émenf If the hoc is not imme-
diately visible, that is if the leftmost argumeaitgs(f) references a functiog rather
than a parameter, then the graph has to be unfolded by iiadtagt in order to locate
the hoc of the spine withig's definition.

While this at first might seem like a description of regular +sbrict function calls,
those in the course of the instantiation also immediatelsphe arguments supplied
by its caller to the callee. There are two possibilities fheform such function calls,
the push/enterand theeval/apply method Marlow 2004. Ultimately this is where
p-reductions take place in conventional functional languiagplementations.

The very lazy\-calculus however allows tHereduction to be omitted, thus no argu-
ments are passed tp Therefore, according to head occurrence reductigaductions

2 Generally this function is namedain or similarly.

cannot take place before the tip of the spine is revealedl tien the abstract machine
simply proceeds to build the graph while walking down theaepi

As the graph is only expanded along its spine, it has a lingactsire in the form
of a series of functions that have been stuck together, whiehsily represented using
a stack. Instead of explicitly maintaining abstraction apglication nodes (replicated
from the function definitions), for efficiency, we use enfiu@ctions as the unit of the
run-time data structure.

4.3 TheEvaluation Stack

These functions are represented by functiwianceswhich hold a pointer to the cor-
responding function definition and act as a copy of the femctlhus the primary run-
time data structure of the STEC-machine is a stack of insgribeevaluation stack
It grows from right to left and unlike a usual stack, read aseswithin the evalua-
tion stack are permitted. Instances are addressed acgdadiheir stack position. The
notation for an evaluation stack containingnstances:

Ei=lylh1... 11 (evaluation stack

Besides the evaluation stack, the state of the abstractineacbmprises atatus register
Sthat specifies the action that is to be taken next, atadget register Tthat points to
thestack addrestargeted by the action:

STE:=(ST,E) (configuratiorn)

Summarising, the evaluation stack encodes the currentasransequence of function
instances, each of them representing a segment of the tepin's. The graph is ex-
panded along its spine as long as the leftmost instaneferences another function in
its Oth argument, namely #rgs(f) = g, assuming is an instance of. We say that
anargument requesty is issued in order to examine the Oth argument oA graph
expansion takes place by pushing another instance (indkis @fg) on the stack.

4.4 Locating an Abstraction

At some point the tip of the spine (hoc) is reached, which éicated by the Oth ar-
gument of the leftmost instance being a paramB,fenather than a function reference.
In order to effect g~reduction, the corresponding abstraction/applicatiain must be
located. The abstraction will occur somewhere further @psihine within an instance
of f. However, there might be multipleinstances on the evaluation stack, but we want
only the one that corresponds to the appropriate abstractio

To determine the correct scope of an instanitesuffices to identify the instance
that created. We callstheparentof t. This corresponds to the edge from an argument
node ofs to its right-hand side in the term graph. This relationshsigexpressed by
parent edgesn the evaluation stack that connect each function instaviteanother
instance further right in the stack. So besides the referém¢he function definition
it represents, a function instance also maintains a poiotéis parent. How parent

pointers are established is covered later. An instance wfietibn f with a parent edge
to the instance at stack addresis denoted byf@.

| i=FA (function instance

If the argumenPif occurs in a functiom, then for each instance gf the corresponding
instance off is connected by a chain of one or more parent edgdfsen an argument
of this form is encountered, the status register is séH:oPif, indicating aparameter
request Thereby the search for the abstraction is conducted bgviinllg parent edges,
which we callbacktracing Backtracing is completed once the dynamic pivot (an in-
stance off) is located® The sought-after abstraction is il parameter of the located
function instance:

Parameter-Requese;’ . a,..g5..)
— (7, p,..08.) f#g (Backtrace)
— (Aj,a—1, -»-gap-»-) f =g (Request argument)

45 Locating the application

The application node that matches this abstraction is déurtip the spine, and in the
majority of cases (i.e. when the function application isfeetty saturated) within the
function instance just to the right éf calledf’s predecessor This is where the search
for the application node begin$ & a— 1). Therebyi — 1 abstractions (parametersff
have already been skipped, therefore the hext abstraction nodes that occur further
up the spine cannot belong to the abstraction that is tprieeuced.

To locate the corresponding application node, the spingdibe walked upwards
applying the parentheses-matching algorit/$s: 4; indicates that — 1 unmatched ab-
straction nodes have been passed while walking upwards.thieunext — 1 application
nodes must be skipped. Keeping in mind that each fundticepresents a sequence of
arity(f) abstractions followed bjargs(f)| applications, the algorithm is implemented
as follows by the abstract machine:

Argument-Requesta;, a,...f; ...)
— (Ai,‘args(fmamy(f),a— 1,f;) largs(f)| <i (Skip)
— (args(f),a,..f5..) largs(f)| >i (Serve)

Once the matching application node is found its valtgs (f) is to substitute the tip of
the spine in the subsequepteduction. We say it iserved(put into theSfor examina-
tion).

3 This corresponds to static links and static chains in the call stack of the rensiistem of
imperative programming languages.

4 Due to the scoping rules of functional languages it is always the firsiroence of anf-
instance that binds the requested parameter.

5 Accordingly in conventional execution models parameters of a perfsatiyrated function
call passed directly by the caller.

4.6 Very Lazy Evaluation

Once the hoc is identified and the corresponding abstrdapptication pair is located,
according to the definition of-reduction the term is to be rewritten in multiple posi-
tions: First, each occurrence of the substitution varigbleplaced by the argument’s
right-hand side, then the abstraction and application sade discarded. However, not
one of these operations are performed by the abstract negahifrich at first may be
surprising. Then again it is natural that modifications afiwdual nodes cannot easily
be mapped to a representation of the term where functioannss capture only its
macro-structure and do not reproduce the internal streafithe function definitions.

Consequently the abstract machine retains the abstréagioiication pair, which is
semantically correct in terms ffequivalency. This simplifiegreduction considerably,
as the de-Bruijn indexes remain valid soaaonversion is necessary. Here we do not
discuss sharing, so we do not address multiple occurrerfcasbstitution variables.
Thus nothing but the hoc itself must be substituted, whi¢hades with what is defined
ashead linear reductiofiDanos 2004

But also the substitution of the hoc can be omitted, if it doaisinterfere with sub-
sequent evaluation. Indeed the Oth argument of an instdrecéuaction f is examined
only once, directly after it is pushed on the stack. Also ita$ counted ifargs(f)| so it
has no impact on the parentheses-matching algorithm. fdrerthe abstract machine
leaves the hoc in place leaving all function instances urifiead

There are two cases for the value of the application nodestinduish for further
action. An argument may reference either a function or ampeter. Let us first as-
sume the former, thuS= f. Thenf is instantiated and pushed on the evaluation stack.
Thereby the function instance containing the scrutiniggalieation node (the current
value of theT -register) is registered as the parent of the new functietairce. Theis
is set toAg andT to the address of the newly created function instance, $wathagain
the Oth argument of the leftmost function instance is exauahiior the nexy-reduction
step.

Instantiate(f,a,...)
— (Ag,n, f2.) (Push Instance)

If the argument is a paramete £ Pif) according toy-reduction, it would substitute
the hoc by this value. But once again, no such substitutipeiitormed by the abstract
machine, which saves anrrconversion. Instead, without any intermediate rewritimg
argument is treated directly as if it was the hoc, accordmthe inference rules for
parameter handling specified above.

4.7 Wrappingit up

Based on the presented mechanisms a specification of thacthmtichine can be given
that implements the very lazy-calculus. The operational semanti€sg(8) is speci-
fied in a rather unconventional but quite intuitive mannesteNthat variables with no
relevance to a specific rulelgn’t-cared are denoted as-', similarly for sequences,
denoted as."".

Summarising, some interesting characteristics of therattstachine can be ob-
served:

STE:= (ST,E) (configuration)

S u=F|P|Ay (status register)
T ==A (target register)
E :=lIhlyp1.. 11 (evaluation stack)
A =N (stack address)
| ==FA (function instance)
F =N (function address)

Fig. 7. Configuration grammar

— Arguments are fetched at the latest moment possible irrasinio conventional
execution models where arguments are passed by the calfzoasas they are
available rather than as soon as they are required, whiclioisraof strictness in
the argument handling. Therefore it is in fact justified tosider our model lazier.

— On the evaluation stack a function instance is always tiyrpceceded by its caller.
This relation is modeled without the help of pointers. Thaicure is exploited by
the abstract machine when fetching arguments.

— There is no need to maintain a constantly updated envirohnide evaluation
stack can be thought of as an incremental definition of the@mwment.

— Interestingly, the sequence of instances on the evatustazk directly encodes the
path from the root of the fully expanded, unreduced term édtigh of its spine.

— The termis in QHNF either if the hoc is a free variable (sush aonstructor), or if
the term is functional such that for a selected abstractimmatching application
is found. The latter case manifests itself in an argumentesattempting to cross
the right boundary of the evaluation stack.

— Very lazy evaluation is linear in many aspects such as thmneran which functions
are defined, the linearity of the reduction strategy, andinetime data structure
(the evaluation stack). This is possibile due to the teamif using parent pointers
and because of refraining from any rewriting on the spine.

Initial State:(main, L, €)

Instantiate(f,a,...)
— (Ao,n, f2..) (Push Instance)

Argument-Requests;, a,...f5 ...)

= (Ai_jargs(f)|+arity():@— 1, fa) [args(f)[< (Skip)
— (args(f),a,...f;..) largs(f)| >i (Serve)
Parameter-Reques{F.*if ,a,..08..)

— (p,p,.08.) f#g (Backtrace)
—(a,a—1,.08.) f=g (Request argument)

Fig. 8. Operational semantics

4.8 Example evaluated

To depict the evaluation as performed by the STEC machinesgazrd the execution of
the example program froffdig. 6. It was chosen to exemplify the operational semantics
of the STEC machine rather than to reveal the advantagesadfdezurrence reduction.

i i
AX @ @
AX I /\ /\
I @ @ @
@ PN /\ /\
N @ @ Aa Aa
@ @ —a /\ /\ —n | —c |
N /\ A AC X Ab Ab
Aa Ab Ac x | | | |
|] | Ab @ @
a b c /\ /\
b)\lc X)\lc
C X

Fig.9. Head linear reduction of the program graph-aj. 6

To understand the abstract machine evaluation given bélahelpful to identify
each instance on the evaluation stack with the correspgrs#iquence of spine nodes
in Fig. 9. Therefore the function definitions frofig. 6 need to be consulted. First we
expand the term along the spine beginning from the fawotlocate its hoc.

Initial State: (f,L,¢e)
Push Instance: (Ao,l fl)
Serve: - (id,1,f})
Push Instance: (Ao,2,id3 fi)

The hoc isa (in Fig. 9). The corresponding argument belongséds caller f.

Serve: - (Pif,z,id1 f)
Request argument> (Ag,1,id3 i)
Serve: - (id,1,id3 f{") a
Push Instance: — (Ao, 3,id3 id3 i)

For the next argument request in order to locate the ap@@papplication node, a
function instance must to be skipped.Hig. 9 this corresponds to the abstraction node
Aa. The argument index is incremented by one such that the matejpplication node

(the one abovaa) is also skipped:

Serve: - (P9.3id}id] fi)
Request argument: (A1,2,id3 id3 f")
Skip: - (A2, 1,id3id3 i) b
Serve: - (idx 1,id3 id3 i)
Push Instance: — (Ao, 4,idx} id} id3 i)

The call of a known functiomd by idx is realised a spine expansion:

Serve: — (id,4,idx} id% id3)
Push Instance: (Ao,5,id? idx} id3 id3 f;")

Here it can be seen that someeductions may not even require an update of the eval-
uation stack.

Serve: — (PY5,idd idxj id3 id3 i)
Request arguments (A1,4,idz idx} id3 id3 f;")

The request bydx for a parameter that was bound in a different functforequires a
backtracing step to locate the abstraction that binds thewuhoc.

Serve: — (P! 4,iddidx} id}id} f)
Backtrace: — (P;,1,idd idx} id3 id} f) ¢ X
Request argument: (A1, 1,id2 idx} id3 id3 i)

The evaluation terminates because a request attemptssothi@stack boundary. That
means that no abstraction/application pair could be lacaii¢hin the spine, thus the
term is in QHNF.

4.9 Case-Discrimination and Primitives

To implement functional programming languages, two maseeés need attention: case
discrimination and primitives operators. They cannot belefed by means of the pure

\-calculus, which has to be enriched for that purpose. Hbaig semantic extension is

only realised on the abstract machine level, not as yet angtbalculus variant.

program-definition::= function-definitiord
function-definition::= function-id,r, argument alternative

arity n=NO

argument ::= function-id | P{\LITC“O”"d| Oy | constant
alternative ::= integer function-id| default function-id
constant ::= integer| float | ...

Fig. 10. Enriched abstract syntax of the STEC machine language

In the enriched abstract machine language, a case disationns specified by at-
taching a non-empty, integer-indexed list of alternatais(f) to a function definition
f, its right-hand sidergs(f) being the scrutinee. Constructors are mapped to integers
at compile-time unambigously within the constructor sebioé data type. Constructor
parameters can be accessed as the function parametersattetimatives’ right hand-
side. No further measures are necessary to model conssuathey are adequately
handled by the argument request mechanism. A primitiveaipeiQ,) addresses a
platform-specific functionality that is identified by a un&numeric identifieo.

The operational semantics needs to account for the stsgttiat these language
constructs imply. The scrutinee of a case discriminatiorats its constructor only
in QHNF. Thus, to select the correct case alternativegrginuationmechanism is re-
quired to return to the case discrimination once the sceatils evaluated. Likewise,
primitive operators are generally strict in all of their angents, so after the evaluation
of each argument, the evaluation must return to its call siteer to evaluate the next
argument, or if it is saturated to apply the operator.

Strict evaluation may nest, for instance, if the scrutinéa ease discrimination
involves a further case discrimination. Therefore cordtians are also maintained in a
stack, thecontinuation stackC), thus we extend the abstract machine configuration to:

STEC:=(ST,E,C) (configuratior)

The continuation stack holds two types of tokens: case goation tokens and operator
tokens, both of which specify the stack address that tharaation returns to. Addi-
tionally an operator token needs to define the operator iesgmts as well as a list of
previously evaluated operands.

C . =K* (continuation stack)
K = A | 03]V (continuation)
O:=N (operator)
V = integer| float | .. (constant value)

Continuations are pushed on the continuation stack whepearator or a function that

defines a case discrimination is served. In the latter caseviduation (besides pushing
the continuation) proceeds as before by evaluating its-fighd side (the scrutinee). If
an operator is served, its first operand is requested.

Instantiate(f,a,...)

— (Ag,n, f2.,.) lalts(f)] =0 (Push Instance)
— (Ag,n, f2..,C".) lalts(f)| >0 (Scrutinise)
Operator:(0op, -, ..., ..)

— (A1,Mtn..., 05[]) (First Operand)

As soon as the subsequent computation yields a constarg @aindicated byS =

¢, the continuation on the top of the stack is examined. Forsa cantinuation, the
correct alternative is selected and served. For operattintations, before applying
the operator it must first be checked whether more argumeatequired. Only when

sufficient operands have been acquired, the operator isedpahd the result of the
primitive operation is propagated. This semantics is esqed in the last two groups of
Fig. 12

STEC:= (ST,E,C) (configuration)

S n=F |Pf | Ay |00 |V (status register)
T t=A (target register)
A =N (stack address)
E t=lplpog o n (evaluation stack)
C n=K* (continuation stack)
I = FA (function instance)
F 2=N (function address)
K u=ch|ojv] (continuation)

(6] =N (operator)

\% = integer| float | ... (constant value)

Fig. 11. Enriched configuration grammar

In this work we derived from the very la2ycalculus the STEC-machine, which is
a concretisation of the PAM enriched by strict semanticsifpsrt case discriminations
and operators. Injanos 200#different concepts of head linear reduction were mixed
up in one definition. Here we clearly distinct between gelisng p-reduction, defin-
ing a reduction strategy, and giving a concrete implemantehat avoids rewriting.
Furthermore we distinguish between program compilatiahexecution.

5 Perspectives

Even though the PAM has already been discovered years dgs itot yet been inves-
tigated extensively. However, there is ample opporturdtyfdirther research, in partic-
ular it still remains a challenge to find efficient mechanigorssharing as well as for
garbage collection that take advantage of the abstractimasiprominent features.
While it is difficult to reason about the performance of thetedtt machine com-
pared to existing functional language implementationsiait taking these issues into
account, there are aspects about our approach that hold patehtial in this regard.
Aside from the reduced amount of rewriting steps that areired by the very lazy
N\-calculus, it is primarily the lean memory profile of the STHE@chine that is promis-
ing. The run-time data structures are compact, since patiminstance only two
pointers need to be allocatédlhis results in a smaller memory footprint compared
to conventional graph reduction models, which in each ¢cksilso maintain a set of
parameters. Furthermore it is noticeable that no pointdatgs are necessary resulting
in very few write accesses. While partly compensated by @it read accesses (be-
cause of the need to locate abstraction/application psiilthe advantage seems to

6 A potential optimisation would be to allow variably-sized function instancesjrigtances
without a parent pointer for functions without free parameter variables

Initial State:(main, L, €, €)

Instantiate(f,a, ..., ...)
— (Ag,n, f2..,.0) |alts(f)
f

0
— (Ag,n, f&..,C".) lalts(f)| >0

| =
| >
Argument-Requesta,a, ..f5 ..., ...)

- (Ai—\args(f)l-karity(f)aa* 1.fq) largs(f) <i

— (args(f),a,..fq..\.) largs(f)| >i
Parameter-Requez{l?if .a,..05...,)

— (. p.dh..) f£g

— (A,a—1,.05....) f=g

Operator:(0op, - tn...,..)
— (A17 n7tr|...7 ng[])

Operand(V,-,...,03p[V1, .., Vc]...)

— (applyop(V1, ..., Ve, V), = oy o) arity(op) =c+1
— (Ac+2,8,..,09p[V1, ., Ve, V...) arity(op) >c+1

Scrutineeic, —,.. Y .,c2.)
— (altse(f),a,.. 0.,)

(Push Instance)
(Scrutinise)

(Skip)
(Serve)

(Backtrace)
(Request argument)

(First Operand)

(Apply Operator)
(Next Operand)

(Serve alternative)

Fig. 12. Enriched operational semantics

predominate. This presumption however is yet to be valilaiea comparison with a
well-established execution model like the STG-machieyton Jones 1992

Implementations based on super-combinators usually dertiy@ abstract-machine
code into machine code of the target architecture that iateg the semantics of the
abstract machine and therefore can be directly executeccby@ete machine. Due to
the simplicity of the STEC-machine, a different compilatimodel, one that separates
the abstract machine and the function definitions, seems éolbquate. The operational
semantics can be implemented in a very small piece of exeleutaachine code. Each
function definition can be stored in a compact array as regyleata. Access to individ-
ual arguments of a function definition (as frequently perfed by the STEC-machine)
can be accomplished efficiently using an array lookup if daunily-sized representa-
tion for the arguments is chosen. This would hardly be the easen compiling the
function definitions combined with the operational sen@nto machine code, which
would also lead to a considerable increase of the memoryfiobt

Since the evaluation stack only grows, a garbage-collectiechanism is required
to release memory occupied by function instances that atenger required. In that
sense the evaluation stack in fact is a heap. However, itdvoalshort-sighted to ne-
glect the fact that it is highly structured in comparison tasaal heap in which data is
organised as memory blocks at arbitrary positions that tefeach other. Much is to be
expected by a sophisticated garbage-collection mechahiznsystematically exploits
this structure for increased efficiency. Since the evabmagiack is an incremental defi-
nition of the environment, this would effectively be reelisas a (linear) compaction of
the evaluation stack.

Obviously this linearity cannot be sustained once shasmgtioduced to the model,
as sharing in a sense implies a non-linear structure. 8tdl linearity of evaluation
might offer new possibilities for integrating sharingti@iques that achieve a higher
degree of sharing than full laziness by breaking the lin&aicture only at few, well-
defined points. In particular the subject of optimal evaarain the sense ot[évy 197§
should be investigated in the light of very lazy evaluation.

Summarising, there is still much opportunity for complatand optimisation of the
STEC-machine in order to obtain a new type of practical lpghformance functional
language implementation. In particular it is an interestinestion which of the optimi-
sations used by today’s compilers can be applied to the ST&€hine and what new
kind of possibilities for optimisations are opened up bytiedel.

References

Fairbairn 1987. dN FAIRBAIRN, STUART WRAY, Tim: A simple, lazy abstract machine to
execute supercombinatorBunctional Programming Languages and Computer Architegture
Springer, 1987, pp 34-4kecture Notes in Computer Sciendelume 274/1987.

Krivine 2007. EAN-Louls KRIVINE, A call-By-name lambda-calculus machirt¢igher Or-
der and Symbolic ComputatipKluwer Academic Publishers, September 2007, pp 199-207.
Volume 20, Issue 3.

Peyton Jones 1987. 180N L. PEYTON JONES, PHILIP WADLER, PETER HANCOCK, DAVID
TURNER, The implementation of functional programming languagBsentice Hall Interna-
tional, 1987.

http://research.microsoft.com/en-us/um/people/simonpj/papers/slpj-book-1987/

Burn 1988. GeOFFREYL. BURN, SIMON L. PEYTON JONES, JOHN D. ROBSON, The spineless
G-machine Proceedings of the 1988 ACM conference on LISP and functional amaging
ACM, 1988, pp 244-258.

Peyton Jones 1992. 180N L. PEYTON JONES Implementing lazy functional languages on
stock hardware: the Spineless Tagless G-machine - VersignD2partment of Computing
Science, University of Glasgow, July 9, 1992.

Leijen 2005. DA\AN LEIJEN, The lazy virtual machine specificatidmnstitute of Information and
Computing Sciences, Utrecht University, August 22, 2005.

Holyer 1998. AN HOLYER, ELENI SpPiLIOPOULOU, The Brisk Machine: a simplified STG ma-
chine University of Bristol, Department of Computer Science, March 1998.

Barendregt 1984. H. P.ARENDREGT, The Lambda Calculus: Its syntax and semanti®34.

Danos 2004. WWCENT DANOS, LAURENT REGNIER, Head linear reduction unpublished,
http:/fiml.univ-mrs.fr/ ~ regnier/articles.html ,June 7 2004.

Danos 1996. V. BNOS, H. HERBELIN, L. REGNIER, Game semantics and abstract machines
Symposium on Logic in Computer Scien&EE Computer Society, September 2, 1996, p 394
ff.

De Bruijn 1972. NcoLAAs GOVERT DE BRuUIJN, Lambda Calculus Notation with Nameless
Dummies-a Tool for Automatic Formula Manipulation, with Application to the Church-Ross
TheoremIndagationes Mathematica&972, pp 381-392.

Hughes 1982. R. J. M. BIGHES, Super-Combinators a new implementation method for ap-
plicative languagesProceedings of the 1982 ACM symposium on LISP and functional pro-
gramming ACM, 1982, pp 1-10.

Kamareddine 2001. AAROUZ KAMAREDDINE, ROEL BLOO, RoB NEDERPELT, De Bruijn’s
syntax and reductional equivalence oferms Proceedings of the 3rd ACM SIGPLAN inter-
national conference on Principles and practice of declarative progralgnACM, 2001, pp
16-27.

Danvy 2000. QIVIER DANVY, ULRIK P. SCHULTZ, Lambda-dropping: transforming recursive
equations into programs with block structutelsevier Science Publishers, 2000, pp 243-287.
Partial evaluation and semantics-based program manipulatimiume 248, Issue 1-2 (Octo-
ber 2000).

Marlow 2006. $MON MARLOW, SIMON PEYTON JONES, Making a fast curry: push/enter vs.
eval/apply for higher-order languagedournal of Functional ProgrammindgCambridge Uni-
versity Press, August 10 2006, pp 415-449. Volume 16 2006.

Sestoft 2002. PTERSESTOFT, Demonstrating lambda calculus reductidrne Essence of Com-
putation: Complexity, Analysis, TransformatierEssays Dedicated to Neil D. Jonds Mo-
GENSEN D. SCHMIDT, |. H. SUDBUROUGH (eds.), Springer-Verlag, 2002, pp 420-488c¢-
ture Notes in Computer Scien@b66.

Lévy 1978. &AN-JACQUESLEVY, Optimal reductions in the lambda-calculu& H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus and FormalisfA. &LDIN, J. R. HNDLEY
(eds.), Academic Press, 1978.

http://iml.univ-mrs.fr/~regnier/articles.html

	The Very Lazy -Calculusand the STEC Machine
	 Jan Rochel

