Port Graph Rewriting in Haskell

Jan Rochel

February 6, 2011

Abstract

Introduction to a Haskell library for port graph rewriting with a guide owtio
use it in order to define a graph rewriting system and build a graphicalaatbes
application around it. Also some aspects of the implementation are explained.

1 Introduction

This document gives an overview over a collection of Hagpatlkages (available on
Hackagesee below) that offer a monadic EDSL (embedded domainfgplemguage)
to define a port graph rewriting system together with a frodthat can be used to build
a graphical, interactive application around it.

The need for an interactive port graph rewriting librarysadrom investigations
into different\-calculi and several variants of combinatory logic in orttefind more
efficient implementations of functional programming laagas. These calculi are (im-
plementable as) graph rewriting system, amongst others:

Combinatory logic

Supercombinator calculus

Lambdascopevian Oostrom 2004

A-calculus with Wadsworth’s notion of sharing

While all of these implement the-calculus each have unique characteristics and
show different run-time behaviour. It can be very hard to @efood understanding
of such systems just by looking at their definition. To thisl@eme would usually
evaluate examples by hand or implement an evaluator foraleelcs. Both have their
problems. The pen-and-paper approach involves an immemserd of manual labour
again and again, but at least provides a visualisation afgtiections, which is usually
very helpful. An evaluator relieves you from having to penfiaeductions by hand, but
automation does not always make things clearer. Furtherihéorces you to decide
for a reduction strategy, which takes away the flexibilitynainual reduction.

This is the gap that this library is to fill by making it pos&tib specify with mini-
mal effort a graph rewriting system in Haskell along with ateractive frontend, that

1You might not be sure which reduction strategy you might waptaafter all.

http://hackage.haskell.org/

allows you to apply individual rewriting rules at specificgitions and gives you a
visual impression of the evaluation.

1.1 Port Graph Rewriting

The presented framework is foewrite systemsthat operate ohypergraphswith ports.
It is assumed that the reader has a basic notion of graphtiregyrotherwise refer to
[Heckel 2008, for more in-depth study of port graph rewriting, segtdwart 200]L
However there is one thing to clarify about this document:

DISCLAIMER. This is not a scientific result on graph rewriting. Neitheesdo
it give any theoretical insight nor is the library based oedtetical results in graph
rewriting. It is not more than a purely pragmatic approachttack a concrete problem.
Also do not complain about improper use or introduction afi@ology. This is meant
to be informal!

That said, we can concentrate on the ingredients of our fremmieand describe
quickly at what sort of port graph rewriting we are lookingadh of the graph’s nodes
have a user-defined type. Each type has a signature thafispecfixed number of
distinguishable ports. Nodes are linked via edges, whichotdy be attached to their
ports. While a port can not bind not more than one edge, edggsmayperedges,
i.e one edge may connect not only two ports but any subseedjriph’s ports. On
this structure we may define a setrefvrite rules each expressing a substitution of
some part of the graph. They are usually of the farm R whereL is called thdeft-
hand side or pattern of the rule and identifies the subgraph that may be subslibyt&,
theright-hand side of the rule. With a set of such rewrite rules we can encode ¢exnp
graph transformation procedures. A rewrite rule can beiegpbd any position of the
graph thamatches the patterri.

2 Case Study: SKI Combinators

As an illustration of such a system, let us look at the SKI corator calculus, a very
simple (yet Turing completerm rewrite system.* SKI terms have the forrexpr ::=
var | S| K| I | expr expr thus an applicative structure over the constants, and|
and some set of variablear.

Sfgx — fx(gx
Kxy - X (Rewrite rules of the SKI calculus)
[X — X

The first of the above rules, which duplicategives us a good motivation to re-
formulate this term rewrite system as a graph rewrite sysfEmat allows us to avoid

2|t is actually possible to change the port assignment of a dgdamically while rewriting, but for now
it is easier to assume a static assignment.

3While for most cases edges connecting nor more than two porsuifreient, such a restriction would
not make the library any simpler, but rather involve additlaeecks, hence hyperedges are supported.

4For some fundamentals about term rewriting, Békipedia

http://en.wikipedia.org/wiki/Term_rewriting

duplication by keeping a single instance of the subterm heatdyx but maintain-
ing two pointers to it. That way subsequent reductions mgiét subterm arshared.
Fig. 1 shows a straightforward translation of the above rules éngwaph format with
sharing. The @ symbol stands for applicator node, indicating an application of its
left subgraph to the one on its right.

@ | |
/\ @ @ |
@ X /N AN @ — |
/\ @ @ @ Y x /\ X
@ 9 N /\ X
/ A\ f g9 x K X
s f

Figure 1: Naive translation of the SKI rules into graph form

However when attempting to implement this system one witiaeo that these
rules do not yet specify the reduction precisely enoughstfin theK rule, the whole
subgraph bound tg is eliminated, a procedure that is by no means atomic. Second
it is not clear how to handle shared subgraphs, e.g. takesthe tx with the | being
shared. In order to reduce that first has to beunshared (seeFig. 2).

— /\ — @ —
@ I @ /\ X
/\ /\ X
| X | X

Figure 2: Unsharing of a subgraph

wn order to handle sharing/unsharing and the erasure ofapbgwe make these
concepts explicit by introducing two more node typdsplicators and erasers. A
summary of the node types necessary to implement the SKI ioaao calculus is
shown inTable 1.

Based on these node typesHig. 3 we redefine the combinator rules frdfg. 1.
The differences are in the first rule, where the sharingiefmade explicit by a dupli-
cator, and in the second rule where the erasure of tubterm is made explicit by an
eraser in the second rule.

The duplication of subterm&ig. 4) is the same for all three combinators, therefore
we represent it as a single rewrite rule where we abstracttbealifferent combinators
by C. In case of an application the duplication has to split up@modeed in both of the
subterms below the applicator.

The same goes for erasufiéd. 5), where in case of an application after erasing
the applicator both of the applied subterms remain to beedra¥he last two of the

symbol name ports

S S combinator input (north)
K K combinator input (north)
| | combinator input (north)
@ applicator 1 input (north), 2 outputs (south-west, sa#ht)
O eraser input (south)
\V4 duplicator 2 inputs (north-west and north-east), 1 outpatth)
Table 1: Node types for the SKI graph rewriting calculus
@ @ |
/\ /\ @ O |
@ x> @ @ AN @ — |
/\ /N @ Y xvy /\ X
@ 9 f o0 v /\ | X
/\ | K X
S f X
Figure 3: Combinator rules
NS

\/ vV @ @

v oo - [X

I @ v v

/N

Figure 4: Duplication rules

erasure rules are an optimisation that prevents a subgoapé tluplicated just to be
erased afterwards.

O O O
O | oNe) v/ \
|

¢ /\ | |

Figure 5: Erasure and elimination rules

Exercise. Evaluate the tern®K (KIS)K(SKIK (SIKSK)S)K once by term rewrit-
ing and once by graph rewriting using pen and paper and theeabites. Have fun!

3 SKI Combinators in Haskell, a Tutorial

Now on to formulating this system in Haskell! We will dive higin and pick up
learning more detailed aspects about the library as we gaic8ldy, there are two
things we need to specify: 1. the data type of our nodes, 2.relwete rules that
operate on a graph with nodes of that type.

3.1 The Node Type

For the former we choose a straightforward translatiofiabe 1 into a Haskell data
type using record syntax to give names to the individualgoin Fig. 6 each port is
of type GraphRewr i ting. Port. We define two additional kind of nodegar i abl e
andRoot , the first denoting an atom that is not a combinator, therlattlicating the
position in the graph that is to be read as the root of the term.

data I
=S {inp::Port}
| K {inp::Port}

| {inp:: Port}

| Applicator {inp,outl,out2:: Port}

| Duplicator {inpl,inp2,out:: Port}

| Eraser {inp::Port}

| Variable {inp::Port,name:: Sring}
| Root {out::Port}

Figure 6: Node type

While this declaration is very readable to us, gheph-rewr i ti ng library cannot
without further ado, recognise the nodes’ ports by theiorédields. That is why we
need to expose the ports to the library which we do by means iofséance declaration
View [Port] SKI.°

5Using Template Haskell, it would be possible to extract albre fields of typePort automatically and

classMiew v n where
inspect::n—v
update::v—n—n

Figure 7:Vi ewabstraction (modulBat a. Vi ew)

TheVi ew abstraction plays an important role in the presented fbiais a multi-
parameter type-class that by an instance declar&tiew v n permits to abstract from
a typen to expose a value of type It allows both to ‘inspect’ and ‘update’ the value,
while hiding the internal representationrofBy that we can specify our rewrite system
to operate on a graph with a polymorphic node typas long as it exposes the node
type v for which our rewrite rules are defined. The instance dettargFig. 8) is
settled with some boilerplate code.

instanceView [Port] SKI where
inspect ski = caseski of

S {inp=i} —[i]

K {inp=i} —[i]

I {inp=i} —[i]

Applicator {inp=i,outl = 01,0ut2 =02} — [i,01,02]

Duplicator {inpl=il,inp2=i2,out=0} —[il,i2,0]

Eraser {inp=i} —[i]

Variable {inp=i} —[i]

Root {out=o0} —[0]

update ports ski = caseski of

S {}—=si{inp=i} where][i] = ports
K {}—=ski{inp=i} where][i] = ports
[{}—=ski{inp=i} where[i] = ports

[
|
Applicator { } —ski {inp=i,outl = 0l,0ut2 = 02} where|i,0l,02] = ports
[
[
[
[

Duplicator { } —ski {inpl=il,inp2=i2,out =0} where[il,i2,0] = ports
Eraser {}—=si{inp=i} where][i] = ports
Variable {}—ski{inp=i} where]i] = ports
Root {}—si {out=0} where [0] = ports

Figure 8: Exposing the nodes’ ports to the library

3.2 One Rule

With the node type defined we now ought to specify our revgitimles. These con-
sist of two components, a left-hand side and a right-hanel didthis library they are
represented in a very different way. While the left-hand &gpressed as a pattern
matching statement within thieat t ern monad, there are several possibilities to ex-
press the right-hand side. But before going into the delitilss just have a look at an

derive the corresponding instance declaration.

example to see how such a rule definition looks likey. 9 shows an implementation
of the second of the combinator rules fréfy. 3 (theKrule).

ruleK :: (View [Port] n, View K1 n) = Rulen

ruleK = do
K {inp=s} +node
Applicator {inp=i1,outl = 01,0ut2 = X} + nodeAt s
require (s =o0l)
Applicator {inp =i2,outl = 02,0ut2 =y} + nodeAt i1
require (i1=02)
replace0 [Wirexi2,Node$Eraser {inp=y}]

Figure 9: The K rule

We easily recognise a pattern that compriseskoo@mbinator node and two appli-
cator nodes that must meet some additional requirementbellast line these nodes
are then replaced by a wire connectingiith some other port, and an eraser node that
is connected tg. If one labels the ports ifig. 3 with their port names (with labels
named as iffrig. 6), the code irFig. 9 should be easy enough to understand.

Apparently, the code ifrig. 9 is monadic. Indeed, thRul e type is an alias for a
Patt er n returning aRewr i t e, both of which are monads. The latter again is an alias
for aSt at e that operates on a graph as a state variableHiged0). Hence, &Rewrite
is nothing but a graph transformation expressed in an inigeraanner.

type Rulen = Pattern n (Rewriten ())
type Rewrite n = Sate (Graph n)

Figure 10:Rul e type (modulea aphRewri ti ng. Rul)

3.2.1 Pattern Matching

All but the last line inside of thelo block in Fig. 9 encode the left-hand side of the
rule. They are expressions of th& t er n monad, which unsuprisingly encodes pattern
matching of a subgraph. Its implementation is hidden. Ttadeanakes use of three
functions,node, nodeAt, andrequi re (seeFig. 11). While node matches any node
occuring anywhere in the grapipdeAt only matches nodes that are directly connected
to the edge that is supplied as an argument.

Monadic failure in thePattern monad is interpreted as the pattern not being
matched, in which case the rule is not applicable. To expres®ccurrence of spe-
cific node types in our pattern, we exploit a very convenieatture of how in Haskell
patterns matching failures within monads are handled, hathat they result in a
monadic failure instead of agrror. Therefore we can simply denote, which node
type to expect in a monadic assignment.

Ther equi r e function is a kind of guard, that returii$ (aka does nothing) if the
supplied parameter i& ue andf ai | s otherwise. In the example it is used to ensure

node:: Viewvn=-Patternnv
nodeAt:: View v n=-Edge— Patternnv
require:: Monad m=- Bool — m|()

Figure 11:Patt er n construction (modul& aphRewriting. Pattern)

that the node chain spans along the spine of the matchedmaission. Without these
guards the pattern would also match the graph shovAngnl12.

Figure 12: Graph matched by patterrFig. 9 without ther equi r e guards.

3.2.2 The Right-Hand Side

There are several ways to represent the right-hand sideaéthrite rule. Here we do
that in a single line (the last one) using a function oftkel aceN family that has the
effect that all the nodes that have been matched in the defttiside are replaced by
what is given as an argument. In the example, besides addiew &r aser node we
also want to connect the edges (or pdrisandi 2, indicated by théW r e constructor.

3.2.3 Efficiency

Choosing a good order for pattern construction. This lipiamnot about efficiency

4 Making Patterns into Rules

5 Implementation

Not comprehensive just a glance at various key aspects.

81n this library there is no distinction between ports andesidgEdges are really definedtagpe Edge =
Port.

rewrite:: (Match— Rewriten ()) — Rulen

erase:: View [Port] n=Rulen

rewire:: View [Port] n=-[[Edge]] — Rulen

data RHSv = Node v | Wire Edge Edge | Merge [Edge]

replace:: (View [Port] n,Viewv n) = Int — ([Edge] — [RHSV]) — Rulen
replace0 vs = replace 0 $A[| —Vs

replacel vs=replace1$A[el] —vsel

replace?2 vs = replace 2 $A[el, e2] — vsel €2

Figure 13:Rul e construction

5.1 Graph representation
5.2 Reading and writing
5.2.1 Safe vs. unsafe

5.3 The Pattern Monad

6 Conclusion

applications of graph rewriting: language optimisaticediicational purposes

References

[van Oostrom 2004] WCENT VAN OOSTROM, KEES-JAN VAN DE LOOIJ, MARIJN
ZWITSERLOOD, Lambdascope — Another optimal implementation of the lambda-
calculus, Department of Philosophy, Universiteit Utrecht, Aprilth@004.

[Heckel 2006] Reiko HECKEL, Graph Transformation in a Nutshell. Proceedings of
the School on Foundations of Visual Modelling Techniques, Elsevier, 2006, pages
187-198 Electronic Notesin TCS, Volume 148.

[Stewart 2001] GIARLES STEWART, Reducibility between classes of port graph
grammar, Dept. of Computer Science, Boston University, 24th Marg812

	Introduction
	Port Graph Rewriting

	Case Study: SKI Combinators
	SKI Combinators in Haskell, a Tutorial
	The Node Type
	One Rule
	Pattern Matching
	The Right-Hand Side
	Efficiency

	Making Patterns into Rules
	Implementation
	Graph representation
	Reading and writing
	Safe vs. unsafe

	The Pattern Monad

	Conclusion

