
Port Graph Rewriting in Haskell

Jan Rochel

February 6, 2011

Abstract

Introduction to a Haskell library for port graph rewriting with a guide on how to
use it in order to define a graph rewriting system and build a graphical, interactive
application around it. Also some aspects of the implementation are explained.

1 Introduction

This document gives an overview over a collection of Haskellpackages (available on
Hackage, see below) that offer a monadic EDSL (embedded domain-specific language)
to define a port graph rewriting system together with a frontend that can be used to build
a graphical, interactive application around it.

The need for an interactive port graph rewriting library arose from investigations
into differentń-calculi and several variants of combinatory logic in orderto find more
efficient implementations of functional programming languages. These calculi are (im-
plementable as) graph rewriting system, amongst others:

Combinatory logic

Supercombinator calculus

Lambdascope [van Oostrom 2004]

ń-calculus with Wadsworth’s notion of sharing

While all of these implement theń-calculus each have unique characteristics and
show different run-time behaviour. It can be very hard to geta good understanding
of such systems just by looking at their definition. To this end one would usually
evaluate examples by hand or implement an evaluator for the calculus. Both have their
problems. The pen-and-paper approach involves an immense amount of manual labour
again and again, but at least provides a visualisation of thereductions, which is usually
very helpful. An evaluator relieves you from having to perform reductions by hand, but
automation does not always make things clearer. Furthermore it forces you to decide
for a reduction strategy, which takes away the flexibility ofmanual reduction.1

This is the gap that this library is to fill by making it possible to specify with mini-
mal effort a graph rewriting system in Haskell along with an interactive frontend, that

1You might not be sure which reduction strategy you might want apply after all.

1

http://hackage.haskell.org/

allows you to apply individual rewriting rules at specific positions and gives you a
visual impression of the evaluation.

1.1 Port Graph Rewriting

The presented framework is forrewrite systems that operate onhypergraphs with ports.
It is assumed that the reader has a basic notion of graph rewriting, otherwise refer to
[Heckel 2006], for more in-depth study of port graph rewriting, see [Stewart 2001].
However there is one thing to clarify about this document:

DISCLAIMER. This is not a scientific result on graph rewriting. Neither does
it give any theoretical insight nor is the library based on theoretical results in graph
rewriting. It is not more than a purely pragmatic approach toattack a concrete problem.
Also do not complain about improper use or introduction of terminology. This is meant
to be informal!

That said, we can concentrate on the ingredients of our framework and describe
quickly at what sort of port graph rewriting we are looking: Each of the graph’s nodes
have a user-defined type. Each type has a signature that specifies a fixed2 number of
distinguishable ports. Nodes are linked via edges, which can only be attached to their
ports. While a port can not bind not more than one edge, edges may be hyperedges,
i.e one edge may connect not only two ports but any subset of the graph’s ports.3 On
this structure we may define a set ofrewrite rules each expressing a substitution of
some part of the graph. They are usually of the formL→ R whereL is called theleft-
hand side or pattern of the rule and identifies the subgraph that may be substituted byR,
theright-hand side of the rule. With a set of such rewrite rules we can encode complex
graph transformation procedures. A rewrite rule can be applied to any position of the
graph thatmatches the patternL.

2 Case Study: SKI Combinators

As an illustration of such a system, let us look at the SKI combinator calculus, a very
simple (yet Turing complete)term rewrite system.4 SKI terms have the formexpr ::=
var | S | K | I | expr expr thus an applicative structure over the constantsS, K, andI
and some set of variablesvar.

S f g x → f x (g x)
K x y → x
I x → x

(Rewrite rules of the SKI calculus)

The first of the above rules, which duplicatesx gives us a good motivation to re-
formulate this term rewrite system as a graph rewrite system. That allows us to avoid

2It is actually possible to change the port assignment of a nodedynamically while rewriting, but for now
it is easier to assume a static assignment.

3While for most cases edges connecting nor more than two ports aresufficient, such a restriction would
not make the library any simpler, but rather involve additional checks, hence hyperedges are supported.

4For some fundamentals about term rewriting, seeWikipedia.

2

http://en.wikipedia.org/wiki/Term_rewriting

duplication by keeping a single instance of the subterm matched byx but maintain-
ing two pointers to it. That way subsequent reductions inside that subterm areshared.
Fig. 1 shows a straightforward translation of the above rules intoa graph format with
sharing. The @ symbol stands for anapplicator node, indicating an application of its
left subgraph to the one on its right.

@

@

@

S f

g

x →
@

@

f

@

g x

@

@

K x

y
→

x
@

I x

→
x

Figure 1: Naive translation of the SKI rules into graph form

However when attempting to implement this system one will notice, that these
rules do not yet specify the reduction precisely enough. First, in theK rule, the whole
subgraph bound toy is eliminated, a procedure that is by no means atomic. Second,
it is not clear how to handle shared subgraphs, e.g. take the term IIx with the I being
shared. In order to reduce theI it first has to beunshared (seeFig. 2).

@

@

I x

→
@

I @

I x

→ @

I x

→
x

Figure 2: Unsharing of a subgraph

wn order to handle sharing/unsharing and the erasure of subgraphs we make these
concepts explicit by introducing two more node types,duplicators and erasers. A
summary of the node types necessary to implement the SKI combinator calculus is
shown inTable 1.

Based on these node types inFig. 3 we redefine the combinator rules fromFig. 1.
The differences are in the first rule, where the sharing ofx is made explicit by a dupli-
cator, and in the second rule where the erasure of they subterm is made explicit by an
eraser in the second rule.

The duplication of subterms (Fig. 4) is the same for all three combinators, therefore
we represent it as a single rewrite rule where we abstract over the different combinators
by C. In case of an application the duplication has to split up andproceed in both of the
subterms below the applicator.

The same goes for erasure (Fig. 5), where in case of an application after erasing
the applicator both of the applied subterms remain to be erased. The last two of the

3

symbol name ports
S S combinator input (north)
K K combinator input (north)
I I combinator input (north)
@ applicator 1 input (north), 2 outputs (south-west, south-east)
© eraser input (south)

△ duplicator 2 inputs (north-west and north-east), 1 output (north)

Table 1: Node types for the SKI graph rewriting calculus

@

@

@

S f

g

x →

@

@

f

@

g △

x

@

@

K x

y
→

x

©

y
@

I x

→
x

Figure 3: Combinator rules

C

△

→
C C @

△

→

@ @

△ △

Figure 4: Duplication rules

4

erasure rules are an optimisation that prevents a subgraph to be duplicated just to be
erased afterwards.

©

C
→ ε

©

@ →
© ©

△

©

→ △

©

→

Figure 5: Erasure and elimination rules

Exercise. Evaluate the termSK(KIS)K(SSKIK(SIKSK)S)K once by term rewrit-
ing and once by graph rewriting using pen and paper and the above rules. Have fun!

3 SKI Combinators in Haskell, a Tutorial

Now on to formulating this system in Haskell! We will dive right in and pick up
learning more detailed aspects about the library as we go. Basically, there are two
things we need to specify: 1. the data type of our nodes, 2. therewrite rules that
operate on a graph with nodes of that type.

3.1 The Node Type

For the former we choose a straightforward translation ofTable 1 into a Haskell data
type using record syntax to give names to the individual ports. In Fig. 6 each port is
of type GraphRewriting.Port. We define two additional kind of nodes,Variable
andRoot, the first denoting an atom that is not a combinator, the latter indicating the
position in the graph that is to be read as the root of the term.

data SKI
= S { inp :: Port}
| K { inp :: Port}
| I { inp :: Port}
| Applicator { inp,out1,out2 :: Port}
| Duplicator { inp1, inp2,out ::Port}
| Eraser { inp :: Port}
| Variable { inp :: Port,name :: String}
| Root {out :: Port}

Figure 6: Node type

While this declaration is very readable to us, thegraph-rewriting library cannot
without further ado, recognise the nodes’ ports by their record fields. That is why we
need to expose the ports to the library which we do by means of an instance declaration
View [Port] SKI.5

5Using Template Haskell, it would be possible to extract all record fields of typePort automatically and

5

classView v n where
inspect :: n→v
update ::v→n→n

Figure 7:View abstraction (moduleData.View)

TheView abstraction plays an important role in the presented library. It is a multi-
parameter type-class that by an instance declarationView v n permits to abstract from
a typen to expose a value of typev. It allows both to ‘inspect’ and ‘update’ the value,
while hiding the internal representation ofn. By that we can specify our rewrite system
to operate on a graph with a polymorphic node typen as long as it exposes the node
type v for which our rewrite rules are defined. The instance declaration (Fig. 8) is
settled with some boilerplate code.

instanceView [Port] SKI where
inspect ski = caseski of

S { inp = i} → [i]
K { inp = i} → [i]
I { inp = i} → [i]
Applicator { inp = i,out1 = o1,out2 = o2}→ [i,o1,o2]
Duplicator { inp1 = i1, inp2 = i2,out = o} → [i1, i2,o]
Eraser { inp = i} → [i]
Variable { inp = i} → [i]
Root {out = o} → [o]

update ports ski = caseski of
S { }→ ski { inp = i} where [i] = ports
K { }→ ski { inp = i} where [i] = ports
I { }→ ski { inp = i} where [i] = ports
Applicator { }→ ski { inp = i,out1 = o1,out2 = o2} where [i,o1,o2] = ports
Duplicator { }→ ski { inp1 = i1, inp2 = i2,out = o} where [i1, i2,o] = ports
Eraser { }→ ski { inp = i} where [i] = ports
Variable { }→ ski { inp = i} where [i] = ports
Root { }→ ski {out = o} where [o] = ports

Figure 8: Exposing the nodes’ ports to the library

3.2 One Rule

With the node type defined we now ought to specify our rewriting rules. These con-
sist of two components, a left-hand side and a right-hand side. In this library they are
represented in a very different way. While the left-hand sideexpressed as a pattern
matching statement within thePattern monad, there are several possibilities to ex-
press the right-hand side. But before going into the detailslet us just have a look at an

derive the corresponding instance declaration.

6

example to see how such a rule definition looks like.Fig. 9 shows an implementation
of the second of the combinator rules fromFig. 3 (theK rule).

ruleK :: (View [Port] n,View SKI n)⇒Rule n
ruleK = do

K { inp = si}←node
Applicator { inp = i1,out1 = o1,out2 = x}←nodeAt si
require (si≡o1)
Applicator { inp = i2,out1 = o2,out2 = y}←nodeAt i1
require (i1≡o2)
replace0 [Wire x i2,Node $Eraser { inp = y}]

Figure 9: The K rule

We easily recognise a pattern that comprises oneK combinator node and two appli-
cator nodes that must meet some additional requirements. Inthe last line these nodes
are then replaced by a wire connectingx with some other port, and an eraser node that
is connected toy. If one labels the ports inFig. 3 with their port names (with labels
named as inFig. 6), the code inFig. 9 should be easy enough to understand.

Apparently, the code inFig. 9 is monadic. Indeed, theRule type is an alias for a
Pattern returning aRewrite, both of which are monads. The latter again is an alias
for aState that operates on a graph as a state variable (seeFig. 10). Hence, aRewrite
is nothing but a graph transformation expressed in an imperative manner.

type Rule n = Pattern n (Rewrite n ())

type Rewrite n = State (Graph n)

Figure 10:Rule type (moduleGraphRewriting.Rule)

3.2.1 Pattern Matching

All but the last line inside of thedo block in Fig. 9 encode the left-hand side of the
rule. They are expressions of thePattern monad, which unsuprisingly encodes pattern
matching of a subgraph. Its implementation is hidden. The code makes use of three
functions,node, nodeAt, andrequire (seeFig. 11). While node matches any node
occuring anywhere in the graph,nodeAt only matches nodes that are directly connected
to the edge that is supplied as an argument.

Monadic failure in thePattern monad is interpreted as the pattern not being
matched, in which case the rule is not applicable. To expressthe occurrence of spe-
cific node types in our pattern, we exploit a very convenient feauture of how in Haskell
patterns matching failures within monads are handled, namely that they result in a
monadic failure instead of anerror. Therefore we can simply denote, which node
type to expect in a monadic assignment.

Therequire function is a kind of guard, that returns() (aka does nothing) if the
supplied parameter isTrue andfails otherwise. In the example it is used to ensure

7

node :: View v n⇒Pattern n v

nodeAt :: View v n⇒Edge→Pattern n v

require :: Monad m⇒Bool→m ()

Figure 11:Pattern construction (moduleGraphRewriting.Pattern)

that the node chain spans along the spine of the matched subexpression. Without these
guards the pattern would also match the graph shown inFig. 12.

@

... @

... K

Figure 12: Graph matched by pattern inFig. 9 without therequire guards.

3.2.2 The Right-Hand Side

There are several ways to represent the right-hand side of the rewrite rule. Here we do
that in a single line (the last one) using a function of thereplaceN family that has the
effect that all the nodes that have been matched in the left-hand side are replaced by
what is given as an argument. In the example, besides adding anewEraser node we
also want to connect the edges (or ports)6 x andi2, indicated by theWire constructor.

3.2.3 Efficiency

Choosing a good order for pattern construction. This library is not about efficiency

4 Making Patterns into Rules

5 Implementation

Not comprehensive just a glance at various key aspects.

6In this library there is no distinction between ports and edges. Edges are really defined astype Edge =
Port.

8

rewrite :: (Match→Rewrite n ())→Rule n
erase :: View [Port] n⇒Rule n
rewire :: View [Port] n⇒ [[Edge]]→Rule n
data RHS v = Node v |Wire Edge Edge |Merge [Edge]
replace :: (View [Port] n,View v n)⇒ Int→ ([Edge]→ [RHS v])→Rule n
replace0 vs = replace 0 $λ[] → vs
replace1 vs = replace 1 $λ[e1] → vs e1
replace2 vs = replace 2 $λ[e1,e2]→ vs e1 e2

Figure 13:Rule construction

5.1 Graph representation

5.2 Reading and writing

5.2.1 Safe vs. unsafe

5.3 The Pattern Monad

6 Conclusion

applications of graph rewriting: language optimisations,educational purposes

References

[van Oostrom 2004] VINCENT VAN OOSTROM, KEES-JAN VAN DE LOOIJ, MARIJN

ZWITSERLOOD, Lambdascope – Another optimal implementation of the lambda-
calculus, Department of Philosophy, Universiteit Utrecht, April 10th 2004.

[Heckel 2006] REIKO HECKEL, Graph Transformation in a Nutshell. Proceedings of
the School on Foundations of Visual Modelling Techniques, Elsevier, 2006, pages
187-198.Electronic Notes in TCS, Volume 148.

[Stewart 2001] CHARLES STEWART, Reducibility between classes of port graph
grammar, Dept. of Computer Science, Boston University, 24th March 2001.

9

	Introduction
	Port Graph Rewriting

	Case Study: SKI Combinators
	SKI Combinators in Haskell, a Tutorial
	The Node Type
	One Rule
	Pattern Matching
	The Right-Hand Side
	Efficiency

	Making Patterns into Rules
	Implementation
	Graph representation
	Reading and writing
	Safe vs. unsafe

	The Pattern Monad

	Conclusion

